
Shared Memory Programming: Now share objects into shared memory in the fastest way and with fewer steps

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 1

Shared Memory Programming: Now share objects into shared
memory in the fastest way and with fewer steps

Applies to:
SAP NetWeaver Application Server release equal or higher than 6.40

Summary
This article deals about the technique of sharing the class instances and anonymous data objects into
shared memory. This has got many advantages over the earlier memory sharing techniques in ABAP in
terms of flexibility, speed and performance volumes for sharing data from within ABAP programs.

Author(s): Priti Mulchandani

Company: SAP Labs India Pvt. Ltd.

Created on: 27 December 2006

Author Bio
Priti is working as development specialist in SAP Labs India Pvt. Ltd. from last 2 years, with 3 and half years
of total SAP experience. She has mostly worked on different customer specific projects related to area of IS-
AFS and has keen interest on anything new in ABAP.

Shared Memory Programming: Now share objects into shared memory in the fastest way and with fewer steps

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 2

Table of Contents

Applies to: .. 1

Summary.. 1

Author Bio .. 1

Why Shared Memory and History.. 3

Some Basics about Shared Object Memory.. 3

How to Use SOM – Simple Export and Import Programs.. 6

Conclusion ... 9

Copyright.. 10

Shared Memory Programming: Now share objects into shared memory in the fastest way and with fewer steps

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 3

Why Shared Memory and History
Performance, Long run times, Avoiding database tables for sharing few changing contents from one program
to another was all pointing to one thing – Share your data through Memory .
Well we had few techniques before, to start with “EXPORT FROM” and “IMPORT TO” ABAP memory – but
within current main session. Then came; SPA/GPA mechanism. We were able to share data for few fields
across External Sessions via SAP memory. Of course this was not really comfortable, we wanted more- as
and when our program sizes grew, the requirement of data for sharing across sessions and across users
was a need in a really speedy way. So SAP made it possible by allowing us to store huge data and complex
structures through help of “Cluster Tables”. All these techniques internally copy cluster data from any kind of
memory to our own roll area or context of the program, which takes fair amount of time in case of huge data
and many users.
Sometimes we even felt database tables will be faster and easier way of programming rather than memory
sharing. So can’t we write simple program with good performance whenever we want to share data via
memory access. Well the answer now is “Yes”. We have now something called “Shared Object Memory”. So;
is this kind of memory really new? “Not Really!” We already had something called “Shared Memory” at
application server level. The difference lies in the word “Object” ;-). But it meant a lot and like everything now
being converted to OO, Memory programming also got adapted to it in ABAP. The idea is, we can store
instances and hence the data in the extended place known as “Shared Object Memory”. Actually all of us
have already seen shared memory access but we never realized that ABAP runtime uses it for its own
system programs. For example, we could see the best use of shared memory in Workbench – SE80, when
we shift from one object to other, when we double click on some db table name to switch to SE11, when we
debug using new ABAP debugger to see the contents at runtime, when we double click on some
FM/subroutine and come back to original place…. So this kind of memory was always there – “Everywhere”.

Some Basics about Shared Object Memory
The idea is that SOM (Shared object memory) is available at application server level hence it can be
accessed across transactions and can be shared among the different users in effective way.
We can now come to actual part and its use. At programming level, we will be dealing with One Area class,
Root class, one write program, one read program and tool to define SOM. There are few terminologies
though, so let’s understand those first:
Transaction SHMA – simple transaction to define shared memory areas and its properties, this is as easy
as using SE24 or SE37.

Shared Memory Programming: Now share objects into shared memory in the fastest way and with fewer steps

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 4

Fig 1: Transaction SHMA – Defining Shared memory Area and its properties

Area – Just think that you have to give a new name and reserve some piece of the SOM for sharing your
own object -something like area for building your own house. Technically system differentiates one AREA
from other AREA by some properties/characteristics. A class with the same area name gets automatically
generated once you define your area in SHMA.

Area Instance – Can be compared with different instances at runtime of any usual class, but truly speaking
it’s not the OO instance. It is again a sub portion of the defined area, which actually gets filled with data
through our programs. We can export multiple real OO instances (multiple sets of data) from our programs to
different SOM area instance.

Shared Memory Programming: Now share objects into shared memory in the fastest way and with fewer steps

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 5

Fig 2: SOM Area instances

Root Class – One of the very important properties of the AREA that we will define using SHMA. Truly this is
the class whose instance (mentioned above as real OO instance), we will be storing in SOM from our
program. Any access to area instance is always through root instance. This class is same as any other
global final class but should necessarily have a property called “Shared Memory Enabled”

Area Instance Version/Versioning – Very unique concept that we didn’t have so far. If a reader is reading
the contents of particular SOM instance and the writer also wants to write or update new contents in same
instance, then a new version gets generated every time. Something like - old, new, latest, being build,
expired…. There has to be always one version with which SOM runtime will work and just remember that a
reader always reads active/last committed version if there are multiple versions in SOM. Meanwhile if Writer
has finished updating and if a new active version is now available, the old version will be automatically
garbage collected by SOM runtime.

Locks in SOM – If one writer is writing into same memory area instance, another user should not get access
for writing again. Well the beauty is once you start writing in SOM, system will place a change lock, and
hence no other writer can get the change access on the whole application server for same SOM instance.
On the other hand, Readers lock remains in effect till current session. Thus with the help of above property,
the lock mechanism assures us to get the access to the active/most recent version every time.

Transactional commit – It’s difficult to assure the proper synchronization between memory and database
contents in our programs sometimes, so this assures that only when you do db commit, the related content
will be written to SOM.

There are few other properties such as
Propagation to propagate the changes of SOM from one application server to another of same SAP system
Automatic preloads when someone has cleared/refreshed the contents in SOM (which is directly possible
though single button or through different methods of generated area class), but you want to place it again
automatically without manually executing your write/export program
Freeing complete or part of memory
Deciding the Size of memory area/instances (Also check abap/shared_objects_size_MB profile parameter)
Client separation at memory level which is something similar to specifying “client” in select query.

Shared Memory Programming: Now share objects into shared memory in the fastest way and with fewer steps

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 6

This is basically done once at design time to define our areas and now it’s the time to move to simple
programming to export and import something in these areas.

How to Use SOM – Simple Export and Import Programs
There is one important object called ARE AHNDLE which is a key to write or read objects in SOM. This is an
instance of AREA class and allows us to do many more things with the help of generated area class’s
methods. AREA class is kind of wrapper which hides technicalities of how actually the OO-instances (root
class’s instances) are written inside SOM. In the place of Export and Import statements, we will be using
write and read instance methods of the area class. This is kind of entry point from our program to root object
in SOM instances.

So for sharing data through our code, we will be using two instances AREA HANDLE and ROOT
INSTANCE. Methods of AREA HANDLE will be used to place ROOT INSTANCE inside shared memory.

Following well known ABAP statements are upgraded in the context of SOM–
DEFINE CLASS zcl_my_root …SHARED MEMORY ENABLED – With this you say that your class is going
to also take place in SOM. Check out properties tab for the same in SE24 while defining root class.
CRETAE OBJECT myRoot AREA HANDLE myShmHandle
CREATE DATA dref AREA HANDLE myShmHandle
So we should now realize the fact that we not only store object reference but data references also (from
release 7.0).
Our piece of Export code or WRITE program should look like this:

* Define Area handle and Root instance

Data : myShmHandle TYPE REF TO zcl_my_area, “zcl_my_area is same as area name

 myRoot TYPE REF TO zcl_my_root.

*Get area class instance or area handle and use handle’s ATTACH_FOR_WRITE

*method to export your data in SOM.

myShmHandle = zcl_my_area=>attach_for_write().“You can specify instance name, here DEFAULT is used

* Start filling the contents of shared memory enabled root class into SOM instance
CREATE OBJECT myRoot AREA HANDLE myShmHandle.

myRoot->name = `My first area instance`. “name is simple public attribute in root class

APPEND `Harry` TO myRoot->itab. “itab defined as public internal table of type string

* dref is data reference to string. You can even try with dynamic data types
CREATE DATA myRoot->dref AREA HANDLE myShmHandle.

myRoot->dref->* = `Jul-04-2005`.

IF ...

* tell area handle who is going to work as root- don’t miss this, Root is always stored as attribute of area class
 myShmHandle->set_root(myRoot).

* Finally put the root instance (and hence all its attributes/data) in SOM
 myShmHandle->detach_commit().

ELSE.

Shared Memory Programming: Now share objects into shared memory in the fastest way and with fewer steps

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 7

 myShmHandle->detach_rollback().

ENDIF.

* After this if you will fill in attributes of root instance w/o above blocks; that won’t sit in SOM at all

….
*However if you repeat another similar block, this time with new data for example in root object, a new SOM instance will\

* get created
….

Now let’s have a look at READ Program – This mostly contains opposite methods of AREA class to import
the instances:

\\ DATA:
 myShmHandle TYPE REF TO zcl_my_area,

 myRoot TYPE REF TO zcl_my_root,

 txt TYPE string.

* This time get the handle through static ATTACH_FOR_READ method of area class

myShmHandle = zcl_my_area=>attach_for_read(). “Try catching different exceptions of methods

*Root instance should already be active and present as writing would have been already done using export pgm.

myRoot = myShmHandle->root.

*Now read the contents as you normally do w/o SOM

READ TABLE myRoot->itab INTO txt INDEX 1.

WRITE: / txt.

CONCATENATE myRoot->name

 myRoot->dref->* INTO txt

 SEPARATED BY space.

WRITE: / txt.

*Tell system, that you have finished reading, this will remove read lock

myShmHandle->detach().”Even if you don’t detach, sys will remove at the end of pgm

….

So with this, we are done with placing our references/data/complex structures in the memory.
But how we will be sure it is really working, questions like “Can I see my memory contents after placing? Can
I delete un-needed objects? Can I go and see how many readers are currently reading the object? Or who is
the writer, so that I can fine tune my program” always hover around us while dealing with memory programs.
And answer to these and many more questions finally lies with the interesting transaction SHMM – A
powerful monitor tool. Check your areas, Instances, Versions, Locks, and even Data/attributes of the
instances of root class and try many more things such as delete.

Shared Memory Programming: Now share objects into shared memory in the fastest way and with fewer steps

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 8

Fig 3: SHMM – View instances and data

Shared Memory Programming: Now share objects into shared memory in the fastest way and with fewer steps

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 9

Conclusion
To end with, there are few restrictions with SOM programming model. As nothing can be absolutely the best
option, there is always a chance of getting something more powerful than this. But it is good to end with
interesting true figures:
With several hundreds of users, a control and monitor tol took 16000 ms whereas shared memory program
just took 3000 ms. this is because-
-> Without SOM: there was 3 MB memory per user session (50 users = 150 MB)
-> With SOM: 3 MB for all users – now there is direct copy-free access to shared memory i.e. no copy to
session memory or roll area

 Result Access performance: SOM is 100 times faster at first access in a user session!!

Shared Memory Programming: Now share objects into shared memory in the fastest way and with fewer steps

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 10

Copyright
© Copyright 2006 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the
express permission of SAP AG. The information contained herein may be changed without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components
of other software vendors.
Microsoft, Windows, Outlook, and PowerPoint are registered trademarks of Microsoft Corporation.
IBM, DB2, DB2 Universal Database, OS/2, Parallel Sysplex, MVS/ESA, AIX, S/390, AS/400, OS/390,
OS/400, iSeries, pSeries, xSeries, zSeries, z/OS, AFP, Intelligent Miner, WebSphere, Netfinity, Tivoli,
Informix, i5/OS, POWER, POWER5, OpenPower and PowerPC are trademarks or registered trademarks of
IBM Corporation.
Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or registered trademarks of
Adobe Systems Incorporated in the United States and/or other countries.
Oracle is a registered trademark of Oracle Corporation.
UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.
Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are trademarks or
registered trademarks of Citrix Systems, Inc.
HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World Wide Web
Consortium, Massachusetts Institute of Technology.
Java is a registered trademark of Sun Microsystems, Inc.
JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for technology invented
and implemented by Netscape.
MaxDB is a trademark of MySQL AB, Sweden.
SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products and services
mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP AG in
Germany and in several other countries all over the world. All other product and service names mentioned
are the trademarks of their respective companies. Data contained in this document serves informational
purposes only. National product specifications may vary.
These materials are subject to change without notice. These materials are provided by SAP AG and its
affiliated companies ("SAP Group") for informational purposes only, without representation or warranty of any
kind, and SAP Group shall not be liable for errors or omissions with respect to the materials. The only
warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as
constituting an additional warranty.
These materials are provided “as is” without a warranty of any kind, either express or implied, including but
not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement.
SAP shall not be liable for damages of any kind including without limitation direct, special, indirect, or
consequential damages that may result from the use of these materials.
SAP does not warrant the accuracy or completeness of the information, text, graphics, links or other items
contained within these materials. SAP has no control over the information that you may access through the
use of hot links contained in these materials and does not endorse your use of third party web pages nor
provide any warranty whatsoever relating to third party web pages.
Any software coding and/or code lines/strings (“Code”) included in this documentation are only examples and
are not intended to be used in a productive system environment. The Code is only intended better explain
and visualize the syntax and phrasing rules of certain coding. SAP does not warrant the correctness and
completeness of the Code given herein, and SAP shall not be liable for errors or damages caused by the
usage of the Code, except if such damages were caused by SAP intentionally or grossly negligent.

	Applies to:
	Summary
	Author Bio
	Table of Contents

	Why Shared Memory and History
	Some Basics about Shared Object Memory
	How to Use SOM – Simple Export and Import Programs

	Conclusion
	Copyright

