
How-To Guide: Business Object
Layer Programming

SAP
®
 CRM 7.0

Target Audience

System administrators

Technology consultants

Document version: 1.0 – December 2008

© Copyright 2007 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any
form or for any purpose without the express permission of SAP AG.
The information contained herein may be changed without prior
notice.

Some software products marketed by SAP AG and its distributors
contain proprietary software components of other software vendors.

Microsoft, Windows, Outlook, and PowerPoint are registered
trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel Sysplex,
MVS/ESA, AIX, S/390, AS/400, OS/390, OS/400, iSeries, pSeries,
xSeries, zSeries, z/OS, AFP, Intelligent Miner, WebSphere, Netfinity,
Tivoli, Informix, i5/OS, POWER, POWER5, OpenPower and
PowerPC are trademarks or registered trademarks of IBM Corporation.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either
trademarks or registered trademarks of Adobe Systems Incorporated in
the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the
Open Group.
Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame,
VideoFrame, and MultiWin are trademarks or registered trademarks of
Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered
trademarks of W3C®, World Wide Web Consortium, Massachusetts
Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used
under license for technology invented and implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and
other SAP products and services mentioned herein as well as their
respective logos are trademarks or registered trademarks of SAP AG
in Germany and in several other countries all over the world. All other
product and service names mentioned are the trademarks of their
respective companies. Data contained in this document serves
informational purposes only. National product specifications may
vary.

These materials are subject to change without notice. These materials
are provided by SAP AG and its affiliated companies ("SAP Group")
for informational purposes only, without representation or warranty of
any kind, and SAP Group shall not be liable for errors or omissions
with respect to the materials. The only warranties for SAP Group
products and services are those that are set forth in the express
warranty statements accompanying such products and services, if any.
Nothing herein should be construed as constituting an additional
warranty.

SAP Library document classification: PUBLIC

Disclaimer
Some components of this product are based on Java™. Any
code change in these components may cause unpredictable
and severe malfunctions and is therefore expressively
prohibited, as is any decompilation of these components.

Any Java™ Source Code delivered with this product is
only to be used by SAP’s Support Services and may not be
modified or altered in any way.

Documentation in the SAP Service Marketplace
You can find this documentation at the following address:
http://service.sap.com/

SAP AG
Dietmar-Hopp-Allee 16
69190 Walldorf
Germany
T +49/18 05/34 34 24
F +49/18 05/34 34 20
www.sap.com

Terms for Included Open
Source Software
This SAP software contains also the third party open
source software products listed below. Please note that for
these third party products the following special terms and
conditions shall apply.
1. This software was developed using ANTLR.
2. gSOAP
Part of the software embedded in this product is gSOAP
software. Portions created by gSOAP are Copyright
(C) 2001-2004 Robert A. van Engelen, Genivia inc. All
Rights Reserved.
THE SOFTWARE IN THIS PRODUCT WAS IN PART
PROVIDED BY GENIVIA INC AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.
3. SAP License Agreement for STLport
SAP License Agreement for STLPort between
SAP Aktiengesellschaft
Systems, Applications, Products in Data Processing
Neurottstrasse 16
69190 Walldorf, Germany
(hereinafter: SAP)
and
you

(hereinafter: Customer)
a) Subject Matter of the Agreement
A) SAP grants Customer a non-exclusive,
non-transferrable, royalty-free license to use
the STLport.org C++ library (STLport) and its
documentation without fee.
B) By downloading, using, or copying STLport or
any portion thereof Customer agrees to abide
by the intellectual property laws, and to all of
the terms and conditions of this Agreement.
C) The Customer may distribute binaries compiled
with STLport (whether original or modified)
without any royalties or restrictions.
D) Customer shall maintain the following
copyright and permissions notices on STLport
sources and its documentation unchanged:
Copyright 2001 SAP AG
E) The Customer may distribute original or
modified STLport sources, provided that:
o The conditions indicated in the above
permissions notice are met;
o The following copyright notices are retained
when present, and conditions provided in
accompanying permission notices are met:
Copyright 1994 Hewlett-Packard
Company
Copyright 1996,97 Silicon Graphics
Computer Systems Inc.
Copyright 1997 Moscow Center for
SPARC Technology.
Copyright 1999,2000 Boris Fomitchev
Copyright 2001 SAP AG
Permission to use, copy, modify, distribute and
sell this software and its documentation for
any purposes is hereby granted without fee,
provided that the above copyright notice appear
in all copies and that both that copyright notice
and this permission notice appear in supporting
documentation. Hewlett-Packard Company
makes no representations about the suitability
of this software for any purpose. It is provided
“as is” without express or implied warranty.

Permission to use, copy, modify, distribute and
sell this software and its documentation for any
purpose is hereby granted without fee, provided
that the above copyright notice appear in all
copies and that both that copyright notice and
this permission notice appear in supporting
documentation. Silicon Graphics makes no
representations about the suitability of this
software for any purpose. It is provided “as is”
without express or implied warranty.
Permission to use, copy, modify, distribute and
sell this software and its documentation for
any purposes is hereby granted without fee,
provided that the above copyright notice appear
in all copies and that both that copyright notice
and this permission notice appear in supporting
documentation. Moscow Center for SPARC
makes no representations about the suitability
of this software for any purpose. It is provided
“as is” without express or implied warranty.
Boris Fomitchev makes no representations
about the suitability of this software for any
purpose. This material is provided "as is", with
absolutely no warranty expressed or implied.
Any use is at your own risk. Permission to
use or copy this software for any purpose is
hereby granted without fee, provided the above
notices are retained on all copies. Permission
to modify the code and to distribute modified
code is granted, provided the above notices
are retained, and a notice that the code was
modified is included with the above copyright
notice.
Permission to use, copy, modify, distribute
and sell this software and its documentation
for any purposes is hereby granted without
fee, provided that the above copyright notice
appear in all copies and that both that copyright
notice and this permission notice appear in
supporting documentation. SAP makes no
representations about the suitability of this
software for any purpose. It is provided with a

limited warranty and liability as set forth in the
License Agreement distributed with this copy.
SAP offers this liability and warranty obligations
only towards its customers and only referring
to its modifications.
b) Support and Maintenance
SAP does not provide software maintenance for the
STLport. Software maintenance of the STLport
therefore shall be not included.
All other services shall be charged according to the
rates for services quoted in the SAP List of Prices
and Conditions and shall be subject to a separate
contract.
c) Exclusion of warranty
As the STLport is transferred to the Customer on a
loan basis and free of charge, SAP cannot guarantee
that the STLport is error-free, without material
defects or suitable for a specific application under
third-party rights. Technical data, sales brochures,
advertising text and quality descriptions produced
by SAP do not indicate any assurance of particular
attributes.
d) Limited Liability
A) Irrespective of the legal reasons, SAP shall only
be liable for damage, including unauthorized
operation, if this (i) can be compensated under
the Product Liability Act or (ii) if caused due to
gross negligence or intent by SAP or (iii) if based
on the failure of a guaranteed attribute.
B) If SAP is liable for gross negligence or intent
caused by employees who are neither agents or
managerial employees of SAP, the total liability
for such damage and a maximum limit on the
scope of any such damage shall depend on
the extent to which its occurrence ought to
have anticipated by SAP when concluding the
contract, due to the circumstances known to
it at that point in time representing a typical
transfer of the software.
C) In the case of Art. 4.2 above, SAP shall not
be liable for indirect damage, consequential
damage caused by a defect or lost profit.

D) SAP and the Customer agree that the typical
foreseeable extent of damage shall under no
circumstances exceed EUR 5,000.
E) The Customer shall take adequate measures
for the protection of data and programs, in
particular by making backup copies at the
minimum intervals recommended by SAP. SAP
shall not be liable for the loss of data and its
recovery, notwithstanding the other limitations
of the present Art. 4 if this loss could have been
avoided by observing this obligation.

F) The exclusion or the limitation of claims in
accordance with the present Art. 4 includes
claims against employees or agents of SAP.
4. Adobe Document Services
Adobe, the Adobe logo, Acrobat, PostScript, and Reader
are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States and
/ or other countries. For information on Third Party
software delivered with Adobe document services and
Adobe LiveCycle Designer, see SAP Note 854621.

Typographic Conventions

Type Style Description

Example Text Words or characters quoted
from the screen. These include
field names, screen titles,
pushbuttons labels, menu
names, menu paths, and menu
options.

Cross-references to other
documentation

Example text Emphasized words or phrases
in body text, graphic titles, and
table titles

EXAMPLE TEXT Technical names of system
objects. These include report
names, program names,
transaction codes, table
names, and key concepts of a
programming language when
they are surrounded by body
text, for example, SELECT and
INCLUDE.

Example text Output on the screen. This
includes file and directory
names and their paths,
messages, names of variables
and parameters, source text,
and names of installation,
upgrade and database tools.

Example text Exact user entry. These are
words or characters that you
enter in the system exactly as
they appear in the
documentation.

<Example
text>

Variable user entry. Angle
brackets indicate that you
replace these words and
characters with appropriate
entries to make entries in the
system.

EXAMPLE TEXT Keys on the keyboard, for
example, F2 or ENTER.

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Additional icons are used in SAP
Library documentation to help you
identify different types of information at
a glance. For more information, see
Help on Help General Information
Classes and Information Classes for
Business Information Warehouse on
the first page of any version of SAP
Library.

<January 2009> 7

Contents

1 Introduction ...9
1.1 BOL Versions.. 9
1.2 Overview ... 9

2 Basic Features of the BOL Application Programming Interface ..11
2.1 Setting up a BOL Instance... 11
2.2 Component Sets and Components of the Generic Interaction
Layer.. 11
2.3 Issue Queries.. 12

2.3.1 Simple Queries... 12
2.3.2 Dynamic Queries.. 13

2.4 Read Access to Business Objects Using Entities............................. 15
2.4.1 Access Attributes.. 15
2.4.2 Access to Related Entities .. 16
2.4.3 Further Operations on Entities .. 17

2.5 Changing Business Objects Using Entities....................................... 17
2.5.1 Transaction Contexts.. 17
2.5.2 Locking Entities .. 18
2.5.3 Modifying Entity Attributes .. 18
2.5.4 Creating Entities... 19
2.5.5 Deleting Entities ... 20
2.5.6 Execution of Entity Methods ... 21

3 Advanced Features of the BOL Application Programming
Interface ..23

3.1 Display Mode Support ... 23
3.2 Standard Interface to Access Properties of Business Objects........ 23
3.3 Working with Collections .. 25

3.3.1 Local and Global Iterations ... 26
3.3.2 Searching... 27
3.3.3 Sorting ... 28
3.3.4 Filtering.. 29
3.3.5 Changing the Collection Content .. 30
3.3.6 Single and Multi Select Support.. 31
3.3.7 Auto Cleanup Mode.. 33
3.3.8 BOL Reset Survival Mode .. 33
3.3.9 Specialized Collections... 34

3.4 Transaction Handling... 35
3.4.1 Transaction Context Types... 35
3.4.2 Transaction Cycle... 35
3.4.3 Collective Transactions and Change Tracking .. 36
3.4.4 Tracking Transaction State... 37

3.5 Advanced Entity Features ... 37
3.5.1 Input Readiness and Entity Property Modifiers.. 37
3.5.2 Excluding Entities from the Central Modify.. 38

3.6 Business Error Handling ... 38
3.7 Mass Operations Using the BOL Core ... 40

SAP CRM 2007

8 <January 2009>

3.8 Buffering Issues ... 40
3.8.1 Entity Properties... 41
3.8.2 Entity Relations .. 41
3.8.3 Preloading BOL Views.. 42
3.8.4 Locking with Synchronization.. 42
3.8.5 Buffering of Query Results.. 42

3.9 BOL Reset... 43
4 Interface Classes...44

4.1 Core... 44
4.2 Query Services ... 44
4.3 Entities .. 44
4.4 Collection.. 44
4.5 Transaction Context... 44

5 Checkpoint Groups...45
5.1 BOL Checkpoint Groups ... 45
5.2 Related Checkpoint Groups .. 45

6 Inner Details and Debugging ...47
6.1 BOL Entities.. 47
6.2 Collections.. 47

1 Introduction

<January 2009> 9

1 Introduction
The usage of the business object layer and its uniform application programming interface
(API) to access business data offers considerable advantages compared to the usage of
various native APIs historically available for business objects:

 The object oriented BOL API is simple, uniform and easy to use

 The built-in buffer accelerates your applications

 Your programs are decoupled from any interface changes in the underlying business
object specific APIs

 Development of WEBCUIF applications is made easy, since the BOL has been
designed to work hand in hand with the UI parts of the framework

It is possible to enhance the business object layer to cover business data not yet supported:
After the corresponding business objects and query services have been modeled and
implemented, you can use them at runtime.

1.1 BOL Versions
The following list shows the various versions of the Business Object Layer:

Version Description

CRM 3.1 First version – never in productive use

CRM 4.0 First version use in a productive system

CRMIS 4.0 Several improvements – introduction of separate display mode

SAP_ABA 7.0 Relocation from CRM to ABA layer, first usage outside CRM

CRMUIF 5.1 Introduction of dynamic searches; whole CRM with BOL support

CRMUIF 5.2 Stabilization and performance improvements

CRMUIF 6.0 Major internal changes for better performance on high number of objects

WEBCUIF 7.0 Current version; Full Switch Framework support; Stable Core release

1.2 Overview
The business object layer API consists of various interfaces and classes, you use to access
business data. Most important are class CL_CRM_BOL_QUERY_SERVICE you use to select
business objects, class CL_CRM_BOL_ENTITY representing entities as business object
segments, the interface IF_BOL_TRANSACTION_CONTEXT to control transactional behavior,
and IF_BOL_BO_COL providing access to collections holding entities.

The lifetime of these objects in general is the whole session. The BOL API, however,
provides a possibility to free used business objects and their memory.

1 Introduction

10 <January 2009>

Entities and related transactional contexts are centrally managed. This influences their
lifetime but ensures also instance uniqueness. Therefore it is sufficient to compare object
instances for equality instead of object type and key.

2 Basic Features of the BOL Application Programming Interface

<January 2009> 11

2 Basic Features of the BOL Application
Programming Interface
When you use the business object layer to work with business objects in an ABAP application
you typically use code sequences similar to those indicated in the following chapters.

2.1 Setting up a BOL Instance
You create an instance of the business object layer by calling the static factory method of its
core class:

 Syntax

* Start BOL Core module

DATA: lv_bol_core TYPE REF TO cl_crm_bol_core.

lv_bol_core = cl_crm_bol_core=>get_instance().

lv_bol_core->start_up(‘MY_COMPONENT_SET’).

Since the BOL core CL_CRM_BOL_CORE follows the singleton design pattern, you can just
have one instance of it. The START_UP method takes the name of the Generic Interaction
Layer (GenIL) component set you want to start as input parameter and starts the BOL. From
now on you can use all services of the BOL and the component set loaded.

The START_UP method takes another optional parameter IV_DISPLAY_MODE_SUPPORT,
which is set to ABAP_FALSE by default. This means the BOL follows the optimistic locking
approach, which makes all objects appear changeable in the user interface even without a
lock (entity method IS_CHANGEABLE always return ABAP_TRUE). The lock is automatically
requested on the first attempt to really make a change. The lock state of an entity could be
check via method IS_LOCKED.

If the parameter IV_DISPLAY_MODE_SUPPORT is set to ABAP_TRUE the BOL follows the
strict locking approach where only locked objects appear as changeable: For more
information, see Display Mode Support [page 23].

2.2 Component Sets and Components of the
Generic Interaction Layer
Each component set defines a set of GenIL components, each providing specific business
objects with dependent objects and related queries. GenIL component sets and GenIL
components are defined in Customizing for Customer Relationship Management under CRM
Cross-Application Components Generic Interaction Layer/Object Layer Basic Settings.

Components of the GenIL are implemented ABAP classes. In order to find out which
business objects and attributes, which relations, dependant objects, queries and further
services are provided by a component or component set, you may use the so called Model
Browser (transaction GENIL_MODEL_BROWSER).

The following code snippet shows how to load additional components or component sets and
how to check the components loaded so far:

 Syntax

* Load additional component

DATA: lv_component_name type crmt_component_name.

lv_component_name = 'ANOTHER_COMPONENT'.

2 Basic Features of the BOL Application Programming Interface

12 <January 2009>

lv_bol_core->load_component(lv_component_name).

* Load additional component set

DATA: lv_component_set_name type crmt_genil_appl.

lv_component_set_name = 'ANOTHER_COMPONENT_SET'.

lv_bol_core->load_component_set(lv_component_set_name).

* Get components loaded

DATA: lv_obj_model TYPE REF TO if_genil_obj_model,

lv_obj_model_ TYPE REF TO cl_crm_genil_obj_model,

lt_components_loaded type genil_component_tab.

lv_obj_model =
cl_crm_genil_model_service=>get_runtime_model().

lv_obj_model_ ?= lv_obj_model.

lt_components_loaded = lv_obj_model_->get_components_loaded(
).

 Note

Via this technique it is also possible to work fully without predefined component
sets. Just start the BOL core with predefined component set EMPTY, which does
not include any component. After this you may load component by component
via LOAD_COMPONENT method.

2.3 Issue Queries
Before you can work with business objects or “entities” you have to find them. That’s why you
usually start your application with a search. You use a query service object to receive a
collection of entities that match the search criteria given.

2.3.1 Simple Queries
In order to fire a query you need to instantiate the query service you want to use and provide
it with the search criteria.

To get an instance of the generic query service CL_CRM_BOL_QUERY_SERVICE via the
factory method GET_INSTANCE. Use its SET_PROPERTY method to indicate the search
criteria and its GET_QUERY_RESULT method to fire your query and to retrieve a result list
of entities (represented by IF_BOL_ENTITY_COL):

 Syntax

* Create a query service

DATA: lv_query TYPE REF TO cl_crm_bol_query_service.

lv_query = cl_crm_bol_query_service=>get_instance(
‘UIFSearchConnection’).

* Set a search criterion

lv_query->set_property(iv_attr_name = ‘CARRID’

iv_value = ‘AA’).

2 Basic Features of the BOL Application Programming Interface

<January 2009> 13

* Read a search criterion

DATA: lv_carrid TYPE string.

lv_carrid = lv_query->get_property_as_string(‘CARRID’).

* Execute query and receive result

DATA: lv_result TYPE REF TO if_bol_entity_col.

lv_result = lv_query->get_query_result().

As you can see from the example it is also possible to retrieve search criteria from the query
service.

In a generic application, such as the BOL browser, you may use the BOL Object Model
Service to determine available query services of the component set and components loaded.

 Syntax

* Determine available query services

DATA: lv_obj_model TYPE REF TO if_genil_obj_model,

lt_query_names TYPE crmt_ext_obj_name_tab.

lv_obj_model =
cl_crm_genil_model_service=>get_runtime_model().

lv_obj_model->get_object_list(

EXPORTING iv_object_kind = if_genil_obj_model=>query_object

IMPORTING ev_object_list = lt_query_names).

You can perform queries and many other methods of the BOL API using the so called BOL
Browser (transaction GENIL_BOL_BROWSER).

1. Select the component or component set providing the objects you are interested in, e. g.
component set SAMPLE containing sample orders, the OrderQuery, etc.

2. Select the query and enter search criteria before you launch the query.

3. To see a particular object with it attributes, double-click the object ID displayed in the List
Browser.

2.3.2 Dynamic Queries
As of SAP CRM release CRMUIF 5.1 the BOL supports so called dynamic queries provided
with enhanced features:

 In addition to the EQUAL operator, you can use arbitrary operators like GREATER
THAN, LESS THAN, CONTAINS, NOT CONTAINS, etc. to specify the search criteria

 You can search for multiple values for one search criterion at the same time (logical
OR)

 You can save and retrieve predefined searches with preset search criteria as
templates with an arbitrary name

 Syntax

* Get advanced query

DATA: lv_dyn_query TYPE REF TO cl_crm_bol_dquery_service.

lv_dyn_query =

cl_crm_bol_dquery_service=>get_instance(
'UIFAdvSearchFlight').

2 Basic Features of the BOL Application Programming Interface

14 <January 2009>

* Set general query parameter for maximum number of hits

lv_dyn_query->set_property(iv_attr_name = 'MAX_HITS'

iv_value = '5').

* Add selection criteria: Maximum Seats > 5

lv_dyn_query->add_selection_param(iv_attr_name = 'SEATSMAX'

 iv_sign = 'I'

 iv_option = 'GT' “Greater than

 iv_low = '100'

 iv_high = '').

* Execute the query and receive result

DATA: lv_result type ref to if_bol_entity_col.

lv_result = lv_advanced_query->get_query_result().

Because of the dynamic nature the selection parameters of a dynamic query are organized in
a collection. You can access them via method GET_SELECTION_PARAMS, which returns
directly the collection the dynamic query service itself operates on. You can iterate on this
collection in order to check or change all selection parameters.

Besides adding of selection parameters, it is also possible to insert them. In a normal
program this makes not really sense. However you high directly display the parameter
collection in a UI where you normally want to group the criteria by the parameter name.

 Syntax

* Save query as template

lv_dyn_query->save_query_as_template(iv_query_id = ‘My
Query’

iv_overwrite = abap_true).

...

* Load query from template

lv_dyn_query->load_query_template(iv_query_id = ‘My Query’
).

...

Special easy-to-use tags have been developed to display the enhanced features of dynamic
queries in the Web UI:

2 Basic Features of the BOL Application Programming Interface

<January 2009> 15

2.4 Read Access to Business Objects Using
Entities
After you get a list of entities from a query service, you can use them in your application by
displaying their attributes on the user interface, modifying them, deleting them, etc.

2.4.1 Access Attributes
The following coding example shows how to access entities of the query result and how to
read their attributes.

 Note

The methods are the same for all kinds of business objects.

 Syntax

* Use iterator to access entities in query result

DATA:lv_iterator TYPE REF TO if_bol_entity_col_iterator.

lv_iterator = lv_result->get_iterator().

DATA: lv_entity TYPE REF TO cl_crm_bol_entity.

lv_entity = lv_iterator->get_first(). “Entity is UIFFlight
here

WHILE lv_entity IS BOUND.

2 Basic Features of the BOL Application Programming Interface

16 <January 2009>

* Access attributes of business objects selected

DATA: lv_carrid TYPE ref to S_CARR_ID,

lv_connid TYPE S_CONN_ID,

lv_flightdate TYPE string.

lv_carrid ?= lv_entity->get_property(‘CARRID’).

lv_entity->get_property_as_value(EXPORTING iv_attr_name =
‘CONNID’

IMPORTING ev_result = lv_connid).

lv_flightdate = lv_entity->get_property_as_string(‘FLDATE’
).

* Get all attributes of an entity

DATA: ls_attributes TYPE CRMS_BOL_UIF_TRAVEL_FLIGHT_ATT.

lv_entity->get_properties(IMPORTING es_attributes =
ls_attributes).

*

lv_entity = lv_iterator->get_next().

ENDWHILE.

You can access attributes in three different formats:

 Method GET_PROPERTY returns a pointer to the actual value.

 Method GET_PROPERTY_AS_VALUE provides the actual value as exporting
parameter.

 Method GET_PROPERTY_AS_STRING returns the value converted into and string.

 Note

This conversion considers some display formatting rules but not all. So this
resulting string is not intended for direct use in a business application UI.

The attribute access is covered by generic interface IF_BOL_BO_PROPERTY_ACCESS.
This interface is provided not only from entities but also from query services to allow a
uniform attribute access. For more information, see Standard Interface to Access Properties
of Business Objects [page 23].

2.4.2 Access to Related Entities
The following coding example shows how to navigate from one entity to another. This
navigation follows the relations given in the object model.

 Syntax

* Get a list of 1:N related entities

DATA: lv_bookings TYPE REF TO if_bol_entity_col.

lv_bookings = lv_flight->get_related_entities(

iv_relation_name = ‘FlightBookRel’).

DATA: lv_booking TYPE REF TO cl_crm_bol_entity.

lv_booking = lv_bookings->get_first().

* Get a 1:1 related entity

2 Basic Features of the BOL Application Programming Interface

<January 2009> 17

DATA: lv_customer TYPE REF TO cl_crm_bol_entity.

lv_customer = lv_booking->get_related_entity(
‘BookCustomerRel’).

* Get back to the parent

lv_entity = lv_booking->get_parent().

In general, we distinguish between 1:N and 1:1 relations. Method GET_RELATED_ENTITIES
works for both relations and returns always a collection. For convenience, method
GET_RELATED_ENTITY returns directly the related entity for 1:1 relations.

To return the parent object, generic method GET_PARENT is provided.

 Note

Since the parent is not necessarily unique it would return the last used. Also, the
parent can only be returned for non-root objects. So if you follow an association
to another root entity you cannot return via GET_PARENT.

Furthermore, it is possible to get to the root entity of a business object via method
GET_ROOT.

2.4.3 Further Operations on Entities
In addition to the access to attributes and the navigation, an entity provides further
functionalities:

 You can check the changeability with methods IS_CHANGEABLE and IS_LOCKED.
For more information, see Display Mode Support [page 23].

 You may check if an entity instance is still valid, which means that it represents
existing data, via method ALIVE.

 You can directly access model data, like the entity name with GET_NAME or the type
of the attribute structure with GET_ATTR_STRUCT_NAME.

 You can check the properties of an attribute if it is changeable, hidden, mandatory,
etc. with method GET_PROPERTY_MODIFIER. For more information, see Advanced
Entity Features [page 37].

Further functions are described in the following sections.

2.5 Changing Business Objects Using Entities
2.5.1 Transaction Contexts
One of the most important aspects of BOL programming is to know how to modify data. You
can create, modify, and delete entities in accordance to the BOL transaction model, which
supports several kinds of so called transaction contexts to handle entity operations
consistently.

The global transaction context holds all modified root entities, whereas the single business
object scope transaction context exists for each root entity instance. The custom transaction
context can be used to handle special situations, where more than one but not all modified
objects belong to a transaction. In this section we only use the global context. For more
information on the possible scopes of transaction contexts, see Transaction Handling [page
35].

The global transaction context always exists and is accessible via the BOL core instance. A
single BO transaction context (fine granular context) is created either on request, via method
GET_TRANSACTION on an entity, or latest when the object gets locked. Each single BO

2 Basic Features of the BOL Application Programming Interface

18 <January 2009>

transaction context has to be finished once it was created. This happens either by calling
methods SAVE and COMMIT or method REVERT on the context or via a higher order
transaction context (global or customer). Additionally, the methods CHECK_SAVE_NEEDED
and CHECK_SAVE_POSSIBLE allow checking before saving a BO transaction context if
saving is required and possible.

 Note

Always use methods CHECK_SAVE_NEEDED and CHECK_SAVE_POSSIBLE.
Once saving has failed there is no way back.

Once the transaction has been saved it has to be finished with methods COMMIT or
ROLLBACK.

In general, the end of a transaction context also removes the pending locks from the covert
objects. If only an intermediate save is required the COMMIT method allows keeping the locks
via optional parameter IV_KEEP_LOCKS set to ABAP_TRUE.

The REVERT method always removes the lock. All changes covered by the transaction will
be rejected and the object returns to the last saved state of the database. Normally this
synchronization happens directly in the REVERT method. However, for performance reasons
it might be better to do this synchronization in a lazy mode. To do so the optional input
parameter IV_SUPPRESS_BUFFER_SYNC needs to be set to ABAP_TRUE.

For more information, see Transaction Handling [page 35].

2.5.2 Locking Entities
In the default optimistic lock mode (see Setting up a BOL Instance [page 11]), you should
lock an entity before you modify it. However, the entity‘s set-methods check if the entity is
locked and, if not, try to do this. The setter only modifies properties in case the entity is
locked. With display mode support switched on, locking is mandatory.

The current locking granularity of the BOL are the root object instances. So the lock request
for an entity is always delegated to the corresponding root instance.

The following code fragment shows how to lock an entity.

 Syntax

* Lock BOL entity

DATA: lv_success TYPE abap_bool.

lv_success = lv_entity->lock().

In case the lock was set the return value LV_SUCCESS is true (ABAP_TRUE). The current lock
state of an entity can be checked using method IS_LOCKED. With setting a lock
successfully, a transaction context is created for the corresponding root entity instance. The
only way to unlock the entity is to finish this transaction context.

2.5.3 Modifying Entity Attributes
Now we want to modify properties of entities. This is simply done by using the set-methods of
the entity. If you have not started a transaction before modifying properties it will be created
automatically. The following code fragment shows how to modify a property of a booking.

Properties of entities can simply be modified by using the set-methods of the entity.

 Syntax

* 1. Lock an entity and modify a property

* here booking entity with technical name ‘UIFBokking’

2 Basic Features of the BOL Application Programming Interface

<January 2009> 19

lv_booking = lv_flight->get_related_entity(
‘FlightBookingRel’).

IF lv_booking->lock() = ABAP_TRUE.

 lv_booking->set_property(iv_attr_name = ‘SMOKER’

 iv_value = ‘X’).

ENDIF.

* 2. send all changes to BO layer

lv_bol_core->modify().

* 3. get the implicitly created global transaction

DATA: lv_transaction TYPE REF TO if_bol_transaction_context.

lv_transaction = lv_bol_core->get_transaction().

* 4. save and commit your changes

lv_transaction->save().

lv_transaction->commit().

Step 1 modifies the properties of an entity and step 2 communicates all modifications done so
far to the Application Programming Interface (API) layer. Step 3 provides access to the
automatically created global transaction context. Finally, the changes are saved and
committed in step 4.

The given example works with or without display mode support, since the lock is explicitly set.

 Note

Independent of the lock state you can only modify changeable attributes. The
actual changeability of an attribute could be checked with method
IS_PROPERTY_READONLY.

2.5.4 Creating Entities
The following code example shows how to create a root entity together with two related
entities.

 Syntax

* 1. Build parameters to create an entity:

* here a flight entity with technical name ‘UIFFlight’

DATA: lt_params TYPE crmt_name_value_pair_tab,

ls_params TYPE crmt_name_value_pair.

ls_params-name = ‘CARRID’.

ls_params-value = ‘AC’.

APPEND ls_params TO lt_params.

* 2. Get factory for business object

DATA: lv_flight_factory TYPE REF TO
cl_crm_bol_entity_factory.

lv_flight_factory = lv_bol_core->get_entity_factory(
‘UIFFlight’).

* 3. Create root entity

2 Basic Features of the BOL Application Programming Interface

20 <January 2009>

DATA: lv_flight TYPE REF TO cl_crm_bol_entity.

lv_flight = lv_flight_factory->create(lt_params).

* 4. Create child objects

DATA: lv_booking TYPE REF TO cl_crm_bol_entity,

lv_ticket TYPE REF TO cl_crm_bol_entity.

lv_booking = lv_flight->create_related_entity(
‘FlightBookRel’).

lv_booking->set_property(iv_attr_name = ‘CARRID’

iv_attr_value = ‘AC’).

lv_ticket = lv_booking->create_related_entity(
‘BookTicketRel’).

lv_ticket->set_property(iv_attr_name = ‘CARRID’

iv_attr_value = ‘AC’).

* 5. Submit child objects created

lv_bol_core->modify().

* 6. Save and commit changes using single object transaction
context

DATA: lv_transaction TYPE REF TO if_bol_transaction_context

lv_transaction = lv_flight->get_transaction().

lv_transaction->save().

lv_transaction->commit().

It is important to distinguish between the creation of root objects via the entity factory and the
creation of dependent or child objects with the CREATE_RELATED_ENTITY method. The
creation of root objects directly triggers a call of the underlying API. Depending on the model,
the creation of dependent or child objects normally does not trigger the API call. Therefore, it
is necessary to explicitly trigger the API call by using the MODIFY method of the BOL core,
which sends changes to the underlying generic interaction layer. Without this call, the created
child objects will only exist in the BOL buffer and never get saved. The separate MODIFY call
is used to collect fine granular changes and to bundle them before sending them to the API to
process and evaluate them together. For options to control what is send by the MODIFY
method, see Excluding Entities from the Central Modify [page 38].

 Note

For performance reasons, a newly created entity always has the automatic
sending option deactivated to prevent sending empty objects. To send the new
entity using the MODIFY method you need either to set at least one attribute or
to activate the sending option explicitly.

Even after sending a new entity to the API it is not yet persistent. It is only persistent after
finishing the transaction. The persistence state of an entity can be checked via the
IS_PERSISTENT method.

2.5.5 Deleting Entities
When deleting entities the distinction between root objects and dependent or child objects is
of the same importance as when creating entities.

2 Basic Features of the BOL Application Programming Interface

<January 2009> 21

For root object instances the call of the DELETE method is directly sent to the API where the
complete aggregation hierarchy is deleted. The deletion is written to the database with an
internal COMMIT WORK.

 Syntax

* Delete root entity

lv_flight->delete().

When deleting a child object the deletion is not automatically sent to the API. You have to
trigger this explicitly by calling the MODIFY method of the BOL core.

 Syntax

* Delete child object

lv_booking->delete().

lv_bol_core->modify().

DATA: lv_transaction TYPE REF TO if_bol_transaction_context.

lv_transaction = lv_bol_core->get_transaction().

lv_transaction->save().

lv_transaction->commit().

The example code shows that it is necessary to save and commit the transaction to ensure
the persistence of the deletion.

Immediately after the execution of the CL_CRM_BOL_CORE->MODIFY method and the
confirmation by the underlying API the entity is deleted from the BOL buffer. The entity
instance publishes this by raising the DELETED event. Any further access to the entity
instance after it has been deleted can lead to a CX_BOL_EXCEPTION exception.

2.5.6 Execution of Entity Methods
To perform special business functions it is possible to call special methods on an entity that
are designed and implemented for a particular object type. You can use two different
methods for entities. Each of them can have an arbitrary set of import parameters. The
EXECUTE method can return an entity collection of result objects. With the CRMUIF 6.0
release method type EXECUTE2 was introduced. It returns an arbitrary DDIC type instead of
a collection.

The following coding example shows the usage.

 Syntax

* Execute entity method

DATA: lv_items TYPE REF TO cl_crm_bol_entity.

lv_items->execute(iv_method_name = ‘RenumberItems’).

* ... with input parameters and a list of BOL entities
returned

DATA: ls_param TYPE crmt_name_value_pair,

 lt_param TYPE crmt_name_value_pair_tab,

 lv_result TYPE REF TO if_bol_entity_col.

ls_param-name = ‘PROCESS_TYPE’.

ls_param-value = ‘TSRV’.

2 Basic Features of the BOL Application Programming Interface

22 <January 2009>

append ls_param to lt_param.

TRY.

 lv_result = lv_order_header->execute(iv_method_name =
‘createFollowUp’

 it_param = lt_param).

* Error handling

CATCH CX_CRM_BOL_METH_EXEC_FAILED.

* An exception is received if method has indicated an error

* and has not returned more than one entity.

 ...

ENDTRY.

 Note

Before an entity method is processed all pending changes in the BOL buffer are
transferred automatically to the API with an implicit MODIFY.

Entity methods can also include changes of a business object. These changes lead to
automatic locking and the creation of an associated transaction context.

3 Advanced Features of the BOL Application Programming Interface

<January 2009> 23

3 Advanced Features of the BOL
Application Programming Interface
3.1 Display Mode Support
With SAP_ABA 7.0 the Business Object Layer optionally supports the display mode for
entities. It is activated by default if the BOL core is started with the parameter
IV_DISPLAY_MODE_SUPPORT = ABAP_TRUE.

In display mode, a call of the
IF_BOL_BO_PROPERTY_ACCESS~IS_PROPERTY_READONLY method on an entity
returns ABAP_TRUE for each property. Any attempt to change properties, to create or to
delete dependent objects is ignored. Such attempts can be monitored via checkpoint group
BOL_ASSERTS under sub key READ-ONLY VIOLATION.

You can only change entities in the change mode. You can go to change mode by calling the
SWITCH_TO_CHANGE_MODE or the LOCK method. If no lock can be obtained, the entity
will remain in display mode. The current state of an entity can be checked with the
IS_CHANGEABLE method, which is with display mode support equal to method
IS_LOCKED.

 Syntax
* Start BOL core with display mode support

DATA: lv_bol_core TYPE REF TO cl_crm_bol_core.

lv_bol_core = cl_crm_bol_core=>get_instance().

lv_bol_core->start_up(iv_appl_name = ‘MY_COMPONENT_SET’

 iv_display_mode_support = ABAP_TRUE).

* Execute query and access entity

DATA: lv_entity type ref to cl_crm_bol_entity.

lv_entity = ... “Entity is in now display mode

* Switch to change mode and change entity

lv_entity->switch_to_change_mode(). “Reread and lock entity

IF lv_entity->is_changeable() = abap_true.

 lv_entity->set_property_as_string(iv_attr_name =
‘PROPERTY_NAME’

 iv_value = ‘New Value’).

ENDIF.

When an entity is locked its properties are reread to make the latest data available.

3.2 Standard Interface to Access Properties of
Business Objects
To access properties of BOL entities and query services (among others) use their
IF_BOL_BO_PROPERTY_ACCESS interface methods.

3 Advanced Features of the BOL Application Programming Interface

24 <January 2009>

The interface is implemented by entities, simple and dynamic query services, and parameters
of dynamic queries. The interface offers a standard means to work with BOL objects.

 Note

It is possible to cast many BOL objects to an instance of
IF_BOL_BO_PROPERTY_ACCESS.

 Syntax

* Get search criterion of BOL query

DATA: lv_query TYPE REF TO cl_crm_bol_query_service,

 lv_bo TYPE REF TO if_bol_bo_property_access,

 lv_city TYPE string.

lv_query = cl_crm_bol_query_service=>get_instance(
 ‘QUERY_NAME’).

lv_city = lv_query
 ->if_bol_bo_property_access~get_property_as_string(
 ‘City’).

* Short form using alias

lv_city = lv_query->get_property_as_string(‘City’).

* up cast and generic access

lv_bo ?= lv_query.

lv_city = lv_bo->get_property_as_string(‘City’).

* Set property of BOL entity

DATA: lv_entity TYPE REF TO cl_crm_bol_entity

lv_entity->if_bol_bo_property_access~set_property(
 iv_attr_name = ‘CITY’

 iv_value = ‘Walldorf’).

* Short form using alias

lv_entity->set_property(iv_attr_name = ‘CITY’

 iv_value = ‘Walldorf’).

3 Advanced Features of the BOL Application Programming Interface

<January 2009> 25

* up cast and generic access

lv_bo ?= lv_entity.

lv_bo->set_property(iv_attr_name = ‘CITY’

 iv_value = ‘Walldorf’).

As of release CRMUIF 5.1 the interface offers methods to receive the text for a key-code
value in addition to generic getter and setter methods to read and modify business objects
properties.

 Syntax

* Get key code

DATA: lv_person TYPE REF TO cl_crm_bol_entity,

 lv_bo TYPE REF TO if_bol_bo_property_access,

 lv_sex TYPE REF TO bu_sexid. “Defines values 1 =
 Female, 2 = Male

lv_bo ?= lv_person.

lv_sex = lv_bo->get_property(‘SEX’). “Key code

* Get property text for key code:

* -> ‘Male’ or ‘Female’ translated in current language

DATA: lv_sex_text TYPE string.

lv_sex_text = lv_bo->get_property_text(‘SEX’).

The text is taken from the domain values if available or has to be provided by the underlying
GenIL component.

3.3 Working with Collections
The BOL API offers several collections for application use. The most generic collection is
CL_CRM_BOL_COL and it can be used to hold all instances implementing the standard
property access interface IF_BOL_BO_PROPERTY_ACCESS. The collection implements
the standard collection interface IF_BOL_BO_COL. The collection
CL_CRM_BOL_ENTITY_COL is especially designed for handling entities implementing the
IF_BOL_ENTITY_COL collection interface for entities.

There exist several further specializations of these classes. For more information, see
Specialized Collections [page 34].

3 Advanced Features of the BOL Application Programming Interface

26 <January 2009>

The collection interfaces offer a bunch of methods to work with collections – e.g.
GET_FIRST, GET_NEXT, GET_CURRENT, SORT, CLEAR, or ADD.

As of release SAP_ABA 7.0 collections implement the additional interface
IF_BOL_BO_COL_MULTI_SEL for multi selection support. For more information, see Single
and Multi Select Support [page 31].

All collections provide events to track the collection state. The following events are available:

 FOCUS_CHANGED: Raised, if the focus element in single selection mode changes.

 BO_ADDED: Raised, if a new object is added to the collection.

 BO_DELETED: Raised, if an object is removed from the collection.

The events also provide additional information about the object which is subject of the event if
possible.

Additionally, all collections provide an auto cleanup mode where deleted entities will be
automatically removed from the collection. For more information, see Auto Cleanup Mode
[page 33].

Furthermore, collections provide a reset survival mode where the collection tries to restore all
entities in the collection after a BOL reset. For more information, see BOL Reset Survival
Mode [page 33].

3.3.1 Local and Global Iterations
All collection types support global and local iteration. In the default single selection mode,
each non-empty collection has a well-defined focus object. Initially, the first object has the
focus. Any global iteration moves the focus, which is published by the event
FOCUS_CHANGED of the collection.

If you want to iterate on the collection without moving the focus (and without triggering time-
consuming follow-up processes) you have to use local iteration. To do so, request an iterator
object from the collection and use it to iterate.

 Syntax

* Create collection

DATA: lv_collection TYPE REF TO cl_crm_bol_bo_collection,

 lv_property_access TYPE REF TO if_bol_bo_property_access,

3 Advanced Features of the BOL Application Programming Interface

<January 2009> 27

 lv_query TYPE REF TO cl_crm_bol_query_service.

CREATE OBJECT lv_collection.

...

* Add item and make it current

lv_collection->if_bol_bo_col~insert(iv_bo = lv_query

 iv_index = 1

 iv_set_focus = ABAP_BOOL).

* Global iteration

lv_property_access = lv_collection->get_next(). “Global

 “ iteration moves focus

* Local iteration

DATA: lv_iterator TYPE REF TO if_bol_bo_col_iterator.

lv_iterator = lv_collection->get_iterator().

lv_property_access = lv_iterator->get_first()

WHILE lv_property_access is bound.

 lv_property_access = lv_iterator->get_next(). “Local

ENDWHILE. “ iteration does not move focus

There are two iterator interfaces. The standard interface IF_BOL_BO_COL_ITERATOR for
general access is provided by all collections. Collections of CL_CRM_BOL_ENTITY_COL
type also support the IF_BOL_ENTITY_COL_ITERATOR interface for more strict typed
access.

Additionally to local iteration to avoid changes of the collection focus, iterators also provide
features like searching by property (see Searching [page 27]) or filtering (see Filtering [page
29]).

Iterators are unmanaged sub objects of a collection. Once you retrieve an iterator the
collection will not remember it. It is also not possible to determine afterwards on which
collection an iterator will operate. Without this option to access the creating collection directly,
iterator method GET_COPY allows to get a further iterator on the collection without knowing
it.

3.3.2 Searching
Collections provide the FIND method to search for a given business object in the collection. If
found it is returned and the focus is set to this collection entry.

The method takes two parameters, but only one is used for the search at a time. You can
search by index or business object instance. The parameters are taken in the given
sequence. This means that when you provide an index and an instance only the index is
used.

The local iterator interfaces support the search for a single property. This option is provided
by the FIND_BY_PROPERTY method. The first object whose property has the given value is
returned. Neither the global nor the local collection focus is influenced by this operation.

 Syntax

* Find by property

DATA: lv_persons TYPE REF TO cl_crm_bol_entity_collection,

3 Advanced Features of the BOL Application Programming Interface

28 <January 2009>

 lv_male TYPE REF TO cl_crm_bol_entity,

 lv_iterator TYPE REF TO if_bol_bo_col_iterator.

lv_iterator = lv_persons->get_iterator().

lv_male = lv_iterator->find_by_property(iv_attr_name =
 ‘SEX’

 iv_value = 2).

* Set collection focus on the entity found

lv_persons->find(iv_bo = lv_male).

3.3.3 Sorting
You can sort collections using the SORT method. With this method, the collection itself is
sorted and will stay in the resulting sort order. You cannot undo the sort operation.

The mandatory parameter IV_ATTR_NAME specifies the property the collection is to be
sorted by. If you do not specify IV_SORT_ORDER the sort order is ascending.

 Syntax

* Sorting by gender

DATA: lv_persons TYPE REF TO cl_crm_bol_entity_collection.

lv_persons->sort(iv_attr_name = ‘SEX’

 iv_sort_order = IF_BOL_BO_COL=>SORT_DESCENDING).

 Note

The sorting itself is alphanumerical based on the internal format of the attribute.
This means that conversion exits are not considered.

 Note

Text-type components are sorted according to the locale of the current text
environment.

The optional parameter IV_STABLE = ABAP_TRUE is used to perform stable sorting, which
means that the relative sequence of lines that does not change in the sort key remains
unchanged in the sort. Without this addition, the sequence is not retained and multiple sorting
of a table using the same sort key results in a different sequence each time the table is
sorted.

The optional parameter IV_USE_TEXT_RELATION = ABAP_TRUE allows you to sort using
the text related to a key when the attribute is just a key and the key-text relation is known.
The text used in the sorting can be retrieved via GET_PROPERTY_TEXT. For more
information, see Standard Interface to Access Properties of Business Objects [page 23].

The following code sample shows the sorting of a collection of persons by gender. Whereas
the gender key SEX (1 or 2) is used in the above example the gender text (‘Male’ or ‘Female’)
is used for sorting here.

 Syntax

* Sort collection containing UIFFlight entities

lv_flights->sort(iv_attr_name = ‘SEX’

 iv_use_text_relation = ABAP_TRUE).

3 Advanced Features of the BOL Application Programming Interface

<January 2009> 29

The optional parameter IV_PATH_2_SUBOBJECT is used to sort the collection by an attribute
of a related child object. The given relation or relations should be 1:1 relations. In case of a
1:N relation the first object is taken.

If more than one relation should be followed the relations need to be separated by a slash ‘/’.
The attribute name given with IV_ATTR_NAME must fit in with the addressed target object.
The following code sample shows the sorting of a collection of flights by the name of the
customers.

 Syntax

* Sort collection containing UIFFlight entities

lv_flights->sort(iv_attr_name = ‘NAME’

 iv_path_2_subobject = ‘FlightBookRel/BookCustomerRel’).

When the sort table is created, relation FlightBookRel links to object UIFBooking for each
flight. From there, relation BookCustomerRel links to UIFCustomer. The table is sorted by
NAME which is taken from the UIFCustomer object. Since FlightBookRel is a 1:N relation
only the first booking is considered.

You can control the sorting externally in the following cases:

 If the desired sort order is not alphanumerical

 If the desired sort order is based on not supported criteria

 If the desired sort order is based on more than one field

To do so, an instance of IF_BOL_COL_SORTING can be provided by the caller of the SORT
method. During the sort process the method IS_A_GREATER_B of the instance is called
whenever two values are compared. Implement this method and provide the interface to
influence the sort order as needed.

Normally the actual attribute values of the given attribute IV_ATTR_NAME are passed as
IV_A and IV_B. In case pseudo attribute name IF_BOL_COL_SORTING=>CUSTOM is given
the whole entity instance is passed instead. This is also supported in combination with
parameter IV_PATH_2_SUBOBJECT. So the navigation along a fixed path of relations does
not need to be implemented in method IS_A_GREATER_B.

3.3.4 Filtering
Collections can be filtered with the help of an iterator. You can have any number of iterators
for a collection as well as any number of filters on it at the same time. A filter is only applied
via the iterator(s). Thus, the collection itself is never changed by the filtering.

The filter functionality is the same for both iterator types IF_BOL_BOL_COL_ITERATOR and
IF_BOL_ENTITY_COL_ITERATOR. Therefore, all examples concentrate on the standard
iterator IF_BOL_BOL_COL_ITERATOR only.

To set a filter an iterator for the collection is required (see Local and Global Iterations [page
26]). A filter can be set using the IF_BOL_BOL_COL_ITERATOR~FILTER_BY_PROPERTY
method. You have to specify the name of the attribute and a value or value pattern as filter
criterion. You can optionally choose the filter mode.

 Syntax

* Filtering a collection of persons for females only

DATA: lv_persons TYPE REF TO cl_crm_bol_bo_collection,

 lv_filter TYPE REF TO if_bol_bo_col_iterator.

lv_filter = lv_persons->get_iterator().

3 Advanced Features of the BOL Application Programming Interface

30 <January 2009>

lv_filter->filter_by_property(iv_attr_name = ‘SEX’

 iv_value = 1).

The above code sample shows the filtering of a collection of persons by gender. The gender
can be “female” (attribute SEX = 1) or “male” (attribute SEX = 2). After setting the filter
criterion, the iterator only operates on objects matching the given criterion, in the example
persons being female. The attribute value can be given as pattern. The standard ABAP
operator CP will be used for comparison.

All iterator methods respect the filter. This applies especially to the iterator methods SIZE and
GET_BY_INDEX, which behave differently to their counterparts directly on the collection. You
can checked if a filter is used with the public attribute
IF_BOL_BO_COL_ITERATOR~FILTER_ACTIVE.

To set up a more complex filter you can call the FILTER_BY_PROPERTY method several
times. Each call will refine the result according to the additional filter criteria.

You can delete a complex filter by deleting the criteria in the same order they were added.
The DELETE_FILTER method by default only removes the last filter criterion. With the
optional parameter IV_ALL = ABAP_TRUE you can remove all filters at the same time.

You can adapt the filter criteria of your or any given iterator using method ADAPT_FILTER.
You can store filter criteria in a collection independent iterator using iterator method
GET_COPY in combination with method ADAPT_FILTER.

The default filter mode is IF_BOL_BO_COL_ITERATOR=>FILTER_MODE_CACHED. In this
mode, the iterator stores a filtered copy of the original collection. Therefore, operations on the
filtered collection are as efficient as without filter. The downside of this approach is that the
filter result might get invalid when the original collection or the contained entities are
changed. Consequently, this mode should only be used in read-only mode.

The alternative filter mode is
IF_BOL_BO_COL_ITERATOR=>FILTER_MODE_INTERACTIVE. Here, the iterator only
stores the filter criteria and still operates on the original collection. For each iterator operation,
the filter is interactively applied to the original collection computing the result. Thus, the
operations get less efficient, especially operations on the whole collection, such as
GET_SIZE. However, the result is always correct, reflecting all changes to the collection and
their entities directly.

3.3.5 Changing the Collection Content
The content of a collection can be changed via the following single object operations:

 IF_BOL_BO_COL~ADD Append an object to the collection

 IF_BOL_BO_COL~INSERT Insert an object into the collection at a given position

 IF_BOL_BO_COL~REMOVE Remove an object from the collection. All

occurrences of the object will be removed.

You can monitor the adding and removing of objects to/from the collection via the collection
events BO_ADDED and BO_DELETED. The added/removed objects are published by the
events.

Additionally, the following mass operations are supported:

 IF_BOL_BO_COL~ADD_COLLECTION Appends the content of a given collection to

the collection

 IF_BOL_BO_COL~CLEAR Removes all objects from the collection

3 Advanced Features of the BOL Application Programming Interface

<January 2009> 31

You can also monitor the adding and removing of objects to/from the collection via the
collection events BO_ADDED and BO_DELETED as well when performing mass operations.
However, the added/removed objects are not published by the event in that case.

All operations might change the focus object of the collection. For more information, see
Single and Multi Select Support [page 31].

 Note

When adding an object to the collection the sort order is not automatically
preserved. Filters might also get outdated. For more information, see Filtering
[page 29].

3.3.6 Single and Multi Select Support
BOL collections support two different modes for entry selection:

 Single Selection Mode

In this mode, it is only possible to select a single entry at a time: As soon as another
entry is selected, the previous is de-selected.

 Multi Selection Mode

In this mode, it is possible to select more than one entry at a time

You can check the current selection mode using the public collection attribute
IF_BOL_BO_COL~MULTI_SELECT, which could be ABAP_TRUE or ABAP_FALSE, and it can
be set with method IF_BOL_BO_COL~SET_MULTI_SELECT.

In single selection mode, the selected element is accessed with the following methods:

Method Result

IF_BOL_BO_COL~GET_CURRENT Returns the selected element

IF_BOL_BO_COL~GET_CURRENT_INDEX Returns the index of the selected element

IF_BOL_BO_COL~PUBLISH_CURRENT publishes the selected element using the
IF_BOL_BO_COL~FOCUS_CHANGED
event

The selected element is implicitly set with the following methods:

Method Result

IF_BOL_BO_COL~FIND Moves focus either to given index or object

IF_BOL_BO_COL~GET_NEXT Moves focus to the next element and
returns it

IF_BOL_BO_COL~GET_PREVIOUS Moves focus to the previous element and
returns it

 Note

In single selection mode the current or focus element is always defined, except
the collection is empty. The methods of the interface
IF_BOL_BO_COL_MULTI_SEL are deactivated.

When multi selection mode is activated, you may use the methods of the interface
IF_BOL_BO_COL_MULTI_SEL to mark and unmark entries and to check which entries have
been marked (IF_BOL_BO_COL_MULTI_SEL~MARK, UNMARK, GET_MARKED).

3 Advanced Features of the BOL Application Programming Interface

32 <January 2009>

In multi selection mode, the collection methods mentioned above behave differently than in
single selection mode:

Method Result

IF_BOL_BO_COL~GET_CURRENT Returns the last selected element

IF_BOL_BO_COL~GET_CURRENT_INDEX Returns the index of the last selected
element

IF_BOL_BO_COL~PUBLISH_CURRENT Does nothing

IF_BOL_BO_COL~FIND Finds, eventually selects and returns an
element

IF_BOL_BO_COL~GET_NEXT Does nothing

IF_BOL_BO_COL~GET_PREVIOUS Does nothing

Changes to the collection may change the focus. Method IF_BOL_BO_COL~ADD changes
the focus when the collection was empty before. In all other cases, it can change the focus if
the optional parameter IV_SET_FOCUS is given as ABAP_TRUE. The same applies to method
IF_BOL_BO_COL~INSERT.

The method IF_BOL_BO_COL~CLEAR changes the focus to nothing.

 Note

Special attention should be paid to the focus handling of the method
IF_BOL_BO_COL~REMOVE. If the removed object has not had the focus it
remains unchanged. If the focus object is removed the focus is moved to the next
object in the collection (the index of the focus object remains unchanged). Only if
it the last object in the collection is removed (and the collection is not empty) the
focus moves to the previous object.

The following code sample demonstrates a possible coding mistake based on this behavior
and the correct solution for that mistake:

 Syntax

* Example: Remove all flights from Air Canada (AC) from the
collection

DATA: lv_flights TYPE REF TO if_bol_entity_collection,

 lv_flight TYPE REF TO cl_crm_bol_entity.

* Wrong code

lv_flight = lv_flights-> get_first()

WHILE lv_flight is bound.

 IF lv_flight->get_property_as_string(‘CARRID’) = ‘AC’.

 lv_flights->remove(iv_entity = lv_flight).

 ENDIF.

 lv_flight = lv_flights->get_next().

ENDWHILE.

* Correct code

lv_flight = lv_flights-> get_first()

WHILE lv_flight is bound.

3 Advanced Features of the BOL Application Programming Interface

<January 2009> 33

 IF lv_flight->get_property_as_string(‘CARRID’) = ‘AC’.

 lv_flights->remove(iv_entity = lv_flight).

 lv_flight = lv_flights->get_current().

 ELSE.

 lv_flight = lv_flights->get_next().

 ENDIF.

ENDWHILE.

Because of the global iteration the method REMOVE always affects the current focus
element. When the focus object is removed the next object automatically gets the focus. Thus
an unconditional call of GET_NEXT would leave out some objects from the check.

3.3.7 Auto Cleanup Mode
The auto cleanup mode for a collection ensures that deleted entities are automatically
removed from the collection. As a consequence the (last) selected element changes
automatically.

Automatic entity removal is not always necessary and this feature can lead to serious
problems with memory, so by default it is inactive. To activate this function, call method
IF_BOL_BO_COL~ACTIVATE_AUTOCLEANUP. The current state of the collection is
indicated by the public attribute IF_BOL_BO_COL~AUTOCLEANUP, which is ABAP_TRUE if
auto cleanup is active.

 Note

If auto cleanup mode is activate, it is necessary to clear a collection (call method
IF_BOL_BO_COL~CLEAR) when it is no longer needed. The garbage collector
cannot delete the collection if it is referenced in the event handler table of its
entities. If you do not clear unneeded collections, the affected collections remain
in memory until the next BOL reset operation or session end. This can lead to
serious memory issues.

3.3.8 BOL Reset Survival Mode
To free unused memory the application periodically triggers a BOL reset which deletes all
BOL entities and as a consequence clears all collections with auto cleanup activated.
Furthermore, the reset is propagated to the underlying GenIL components to cleanup their
buffers.

Some collections need to protect their content, especially if it is essential for the further
progress of the application. You can use method
IF_BOL_BO_COL~SET_RESET_SURVIVAL_MODE to indicate that the root and access
entities in the collection should be kept and recreated afterwards.

 Note

The use of the reset survival mode limits the effect of the BOL reset and can lead
to considerable runtimes of the reset. To reduce this negative impact, the
recreation is delayed as of release WEBCUIF 7.0.

You can check the content of the collection for reset complaints when activating the reset
survival mode. To avoid negative runtime impacts of this safety check it needs to be activated
via checkpoint group BOL_ASSERTS using transaction SAAB (Assertions and Breakpoints).
Recorded assert violations are collected under sub key
COLLECTION_NOT_RESET_COMPLIANT.

3 Advanced Features of the BOL Application Programming Interface

34 <January 2009>

3.3.9 Specialized Collections
Additional to the simple collection CL_CRM_BOL_ENTITY_COL that only focuses on stricter
typed access to entities, there are specialized collections with additional functionalities
provided.

3.3.9.1 Unique Type Collections
The specialized entity collection CL_CRM_BOL_ENTITY_COL_UT restricts the content of
the collection to a single entity type. The desired type is given to the constructor of the
collection and all methods adding objects to the collection respect it. Violations lead to
exception CX_BOL_EXCEPTION.

 Note

Method ADD_COLLECTION is not supported by this collection type.

You can convert an existing collection to a unique type collection and preserve its content
and state using static method CL_CRM_BOL_ENTITY_COL_UT=>CONVERT. If the
conversion is not possible it will result in exception CX_BOL_EXCEPTION.

Since the type of all entities in the collection is equal the collections offer mass operations on
its content. So far only navigation is supported. Method GET_RELATED_ENTITIES returns a
collection of related entities for a given relation. The collection is build out of all resulting
collections of method GET_RELATED_ENTITIES on each entity in the collection.

 Syntax

* Get all children of all entities of a collection –
standard implementation

DATA: lv_collection TYPE REF TO cl_crm_bol_entity_col,

 lv_iterator TYPE REF TO if_bol_entity_col_iterator,

 lv_entity TYPE_REF TO cl_crm_bol_entity,

 lv_children TYPE Ref TO if_bol_entity_col,

 lv_result TYPE REF TO cl_crm_bol_enity_col.

.

CREATE OBJECT lv_result.

lv_iterator = lv_collection-> get_iterator().

lv_entity = lv_iterator->get_first().

while lv_entity is bound.

 lv_children ?= lv_entity->get_related_entities(
 iv_relation_name = ‘MyRelation’).

 lv_result->add_collection(lv_children).

Endwhile.

* Get all children of all entities of a collection – using
unique type coll

DATA: lv_ut_collection TYPE REF TO cl_crm_bol_entity_col_ut.

lv_ut_collection = .cl_crm_bol_entity_col_ut=>convert(
lv_collection).

lv_result = lv_ut_collection->get_related_entities(
 iv_relation_name = ‘MyRelation’).

3 Advanced Features of the BOL Application Programming Interface

<January 2009> 35

The collection method supports all features of the entity method. Furthermore, optional
parameter IV_MARKED_ONLY allows restricting the set of parent entities to the marked
entities in multi selection mode; in single selection mode only the focus object is taken.

3.3.9.2 Unique Instance Collections
With the specialized collections CL_CRM_BOL_UNIQUE_BO_COL and
CL_CRM_BOL_UNIQUE_ENTITY_COL you can check that each BO or entity instance is
only stored once in a collection. This makes it easy to collect objects in a collection without
the risk of duplicates.

All methods adding objects to the collection check the uniqueness and ignore objects that are
already part of the collection.

3.4 Transaction Handling
3.4.1 Transaction Context Types
Transactions are handled via transaction contexts represented by interface
IF_BOL_TRANSACTION_CONTEXT. There are three different types of transaction contexts:

 Global Transaction Context

This context covers all changes. It is retrieved via the BOL core method
GET_TRANSACTION. The global transaction context is managed by the BOL core
and does not change in the whole session.

 Single Business Object Transaction Context

This context covers the changes of a single business object instance. It is easily
retrieved via method GET_TRANSACTION of any entity belonging to this BO.
Alternatively you can retrieve transaction contexts per root entity instance from the
global transaction context via method GET_TX_CONTEXT. Single BO transaction
contexts are managed by the global transaction manager. The instance associated
with a root entity is unique for a transaction cycle. Once the transaction has finished
a new transaction context is associated with the root entity and the prior one
becomes useless.

 Custom Transaction Context

This context is used for any scope in between the two other context types. A custom
transaction context is an instance of class CL_CRM_BOL_CUSTOM_TX_CTXT,
which needs to be instantiated as needed. With this, any transaction context can be
added to it, including other custom transaction contexts. Custom transaction contexts
are not centrally managed.

The methods of the transaction contexts always act on the whole content of a context.

BOL transactions handle all database updates synchronously.

3.4.2 Transaction Cycle
The general life cycle is the same for all three transaction context types although the creation
and lifetime is different for all of them.

A transaction starts with locking the first object at the latest. The lock event is published by
the BOL core and the transaction manager creates a single BO transaction context for the
locked BO. This instance is stored in the transaction manager. If there has been a transaction
context created before for this BO it will be used. The setting of the lock is published by this
single BO transaction context via event LOCK_SET.

3 Advanced Features of the BOL Application Programming Interface

36 <January 2009>

You can change the BO after starting the transaction. All changes made via the BOL API are
collected in the BOL buffer. Calling method MODIFY of the BOL core communicates the
changes to the underlying business logic. If changes are expected the BOL core
communicates them to the transaction manager and they are saved in the associated single
BO transaction context. This can be repeated many times. You can check if changes that
need to be saved exist via method CHECK_SAVE_NEEDED.

 Note

Pending changes in the BOL buffer are not recognized by this method.

To close the transaction cycle you can save or reset the changes. Before saving you can call
the business logic for further consistence checking via method CHECK_SAVE_POSSIBLE.
The actual saving of the data is initiated by calling method SAVE. This method returns a
success indicator. In the case of success the transaction is closed by calling method COMMIT.
In the unlikely case of an error during saving the transaction cycle needs to be finished with
method ROLLBACK. Using method CHECK_SAVE_POSSIBLE avoids errors.

When calling COMMIT you can specify that you want to keep the lock via optional parameter
IV_KEEP_LOCK = ABAP_TRUE. The lock is released in any case, but the BOL tries to lock
the object again immediately.

 Note

The BOL method COMMIT always forces a synchronous database update.

To reset all changes, call method REVERT. This method resets the buffer state and releases
the lock. The buffer is directly synchronized with the latest saving state from the database by
default. To delay the immediate synchronization, set the optional parameter
IV_SUPPRESS_BUFFER_SYNC = ABAP_TRUE.

 Note

If direct buffer synchronization is suppressed buffer objects are synchronized
only at the next access. In this lazy synchronization mode, it is possible that you
access an entitity that has already been deleted. This leads to an exception. To
be save, you may check the entity state via method ALIVE or you program
securely with a TRY. CATCH CX_BOL_EXCEPTION. ENTRY. construct.

After the transaction cycle a single BO transaction context becomes obsolete and cannot be
used any longer. A custom transaction context can be used for another cycle, and the global
transaction context starts a new cycle anyway.

3.4.3 Collective Transactions and Change Tracking
There is no monitoring of dependencies between root objects so far. It might be that a newly
created root object refers to another newly generated object. If the first one is saved but the
second one not, the database is in an inconsistent state. Since such dependencies are not
automatically tracked, it is up to the application to handle them.

Custom transaction contexts collect single BO transactions which logically belong together. It
is used to build one transaction context consisting of more than one single BO transactions.

 Syntax

* 1. Create custom tx context

DATA: my_tx_context TYPE REF TO
 cl_crm_bol_custom_tx_context.

CREATE OBJECT my_tx_context.

* 2. Add some single BO transactions

3 Advanced Features of the BOL Application Programming Interface

<January 2009> 37

DATA: lv_entity1 TYPE REF TO cl_crm_bol_entity,

 lv_entity2 TYPE REF TO cl_crm_bol_entity,

 lv_tx_ctxt TYPE REF TO if_bol_transaction_context.

...

lv_tx_ctxt = lv_entity1->get_transaction().

my_tx_context->add_tx_context(lv_tx_ctxt).

lv_tx_ctxt = lv_entity2->get_transaction().

my_tx_context->add_tx_context(lv_tx_ctxt).

* 3. Save and commit both single BO transactions together

my_tx_context->save().

my_tx_context->commit().

You can add other transaction contexts to your custom context using method
ADD_TX_CONTEXT. This is possible for any transaction context, which means that not only
single BO transactions contexts but also other custom transaction contexts may be added.

You can also monitor changes over a certain period of time and collect all associated
transaction contexts. This collecting mode is activated via method START_RECORDING and
deactivated via method STOP_RECORDING.

A transaction context that finishes independently is automatically removed from the custom
transaction context that contains it. It is therefore not necessary to remove the transaction
context explicitly using method REMOVE_TX_CONTEXT. So the custom transaction context
is empty after it finishes or the global transaction finishes.

3.4.4 Tracking Transaction State
To track the state of a certain transaction context several events are offered:

 LOCK_SET: Raised only by single BO transaction context when the associated
business object has been locked.

 TX_FINISHED: Raised by any transaction context when the transaction cycle has
finished either via COMMIT or REVERT. In case of single BO transaction contexts,
the event parameter INSTANCE holds the name and key of the associated root entity.
As of release WEBCUIF 7.0 event parameter LOCKS_KEPT publishes the locking
state of the BO after the end of the transaction.

 AFTER_TX_FINISHED: Raised by single BO transaction contexts after event
TX_FINISHED. When performed the raising context is already removed from the
global transaction manager. Thus, the event could be used for retrieving a follow-up
transaction context.

3.5 Advanced Entity Features
3.5.1 Input Readiness and Entity Property Modifiers
To check if an entity attribute is read-only, you can use entity method
IF_BOL_BO_PROPERTY_ACCESS~IS_PROPERTY_READONLY. It returns ABAP_TRUE if
the property is not changeable and not mandatory.

The property modifier is defined for each entity property and determines the input readiness.
It takes one of the following public constants defined in the interface
IF_GENIL_OBJ_ATTR_PROPERTIES:

3 Advanced Features of the BOL Application Programming Interface

38 <January 2009>

READ_ONLY

CHANGEABLE

NOT DEFINED

HIDDEN

MANDATORY

TECHNICAL

To access the property modifier, use entity method GET_PROPERTY_MODIFIER.

By default, it is possible to change attributes of query services.

3.5.2 Excluding Entities from the Central Modify
All new, changed, or deleted dependent objects are sent to the underlying APIs with one
central call of BOL core method MODIFY. Depending on the application, this call may appear
automatically at certain sync points. If entities are not ready to be sent, sending them can
cause errors. In this case, you can exclude such entities from being sent.

Entities are excluded in the following cases:

 A dependent entity was created but its properties were not set

 An entity was sent with MODIFY, but the changes have not been accepted by the
underlying API and the entity has not been changed since. For more information, see
Business Error Handling [page 38].

 An entity was explicitly deactivated for sending

The current status of an entity can be checked with method IS_SEND_ACTIVE on the entity
instance. You can make an explicit change to the status with methods ACTIVATE_SENDING
and DEACTIVATE_SENDING. If you activate or deactivate sending, this can also be
propagated to aggregated child objects recursively via setting optional parameter
IV_PROPAGATE_2_DEPENDENT. The default value is NO_PROPAGATION. You can change it
to value PROPAGATE_2_ALL or PROPAGATE_2_INACTIVE_ONLY. Value
PROPAGATE_2_INACTIVE_ONLY causes the recursion to stop at child objects where
sending is already activated. Thus, deactivated sub-children might be preserved.

3.6 Business Error Handling
The BOL offers a message protocol to support communication of information messages,
warning messages, and error messages. Messages are collected in message containers,
which are handled by the message container manager: There is one message container for
each access object instance and a global one for all general messages without object
relation.

3 Advanced Features of the BOL Application Programming Interface

<January 2009> 39

The message container manager can be reached using the BOL core. The following coding
example shows how to access a particular message container:

 Syntax

* Access messages of a business object

* Get message container manager

DATA: lv_mcm TYPE REF TO cl_crm_genil_mess_cont_manager.

lv_mcm = lv_bol_core->get_message_cont_manager().

* ... to obtain the global message container

DATA: lv_mc TYPE REF TO if_genil_message_container.

lv_mc = lv_mcm->get_global_message_cont().

* ... to obtain the object related message container

DATA: lv_object_name TYPE crmt_ext_obj_name,

 lv_object_id TYPE crmt_gnil_object_id.

lv_object_name = lv_order->get_name().

lv_object_id = lv_order->get_key().

DATA: lv_mc TYPE REF TO if_genil_message_container.

lv_mc = lv_mcm->get_message_cont(iv_object_name =
lv_object_name

 iv_object_id = lv_object_id).

* or directly

lv_mc = lv_bol_core->get_global_message_cont().

lv_mc = lv_order->get_message_container().

The message container interface IF_GENIL_MESSAGE_CONTAINER provides the method
GET_MESSAGES for access. With this method, it is possible to filter for errors, warnings and
information because it takes the message type as parameter. Possible values for the

3 Advanced Features of the BOL Application Programming Interface

40 <January 2009>

message types are defined as constants MT_ALL, MT_ERROR, MT_WARNING, MT_INFO, and
MT_SUCCESS in the message container interface.

Method GET_NUMBER_OF_MESSAGES returns the number of messages of the specified
type. This may be used to notify the user that messages exist.

 Syntax

* Access messages

DATA: lv_number_of_errors TYPE int4,

 lt_error_messages TYPE crmt_genil_message_tab.

lv_number_of_errors = lv_mc->get_number_of_messages(lv_mc-
>mt_error).

IF lv_number_of_errors <> 0.

 lt_error_messages = lv_mc->get_messages(lv_mc->mt_error
).

ENDIF.

If the underlying business logic rejects changes in case of errors, the BOL automatically
deactivates sending to prevent sending the errors repeatedly. The affected entities remain in
buffer state modified, valid, and sending deactivated. Thus, the user input, even if wrong, is
preserved.

In this situation, the application presents the error messages to the user and allows the
correction of the input. A further change of attributes will automatically reactivate sending for
the entity.

3.7 Mass Operations Using the BOL Core
Many operations of the entity API can also be called via the BOL core instance. The
difference in many cases is the possible amount of objects to execute the operation on.
Logically, entity methods operate on the entity instance they are called on. In contrast, the
corresponding BOL core method generally takes a collection of entities as input.

The following operations are supported as mass operations on a collection of entities:

 DELETE_ROOT_ENTITIES: Deletes a given set of root entities. For more information,
see Deleting Entities [page 20].

 EXECUTE_ENTITY_METHOD: Executes an entity method on a given set of entities.
For more information, see Execution of Entity Methods [page 21].

 EXECUTE_ENTITY_METHOD2: Executes an entity method type 2 on a given set of
entities. For more information, see Execution of Entity Methods [page 21].

The BOL core supports these multi-object-enabled operations as well as all major operations
provided by the entities directly, which makes it possible to program mainly against the BOL
core. However, using the entities is more convenient.

3.8 Buffering Issues
The BOL operates on its own entity buffer, and so each of the following is buffered:

 Every entity found by a query

 Every entity read via navigation following a relation

 Each entity modification as well as the creation or deletion of dependent entities

3 Advanced Features of the BOL Application Programming Interface

<January 2009> 41

The underlying buffers of the GenIL components (for the various business object types) are
synchronized with BOL modifications when method CL_CRM_BOL_CORE->MODIFY() is
called. In the CRM UIF application, this happens automatically with each roundtrip. The BOL
buffer is also informed automatically about data changes in the GenIL component.

In special situations, an explicit synchronization between BOL buffer and GenIL component is
necessary. These situations are described in the sections below.

3.8.1 Entity Properties
The entity method CL_CRM_BOL_ENTITY->REREAD can be used to synchronize the buffer
state of the properties and property modifiers of a single entity. Since this method calls the
underlying API directly, it should be used very carefully to avoid performance problems.

If the entity is new, the method does nothing. If the entity has been modified, the properties
are not changed to preserve the modifications.

 Note

As a result of the synchronization the BOL may detect the deletion of an entity
which will result in exception CX_BOL_EXCEPTION.

The BOL call method REREAD instead of method GET_RELATED_ENTITIES for buffer
update efficiency reasons. This only happens if the parent relation of the entity is an invalid
1:N relation and there are less than 20 objects in the current relation.

3.8.2 Entity Relations
The relation between entities is also subject of buffering. The relations may become invalid
and get synchronized automatically on the next access like buffered properties. Even empty
relations are buffered.

You can distinguish between cacheable relations and those that are not subject to buffering.
Those are a property of the underlying object model.

For the cacheable relations, you can specify a mode for navigation. Therefore the navigation
methods GET_RELATED_ENTITY and GET_RELATED_ENTITIES take an optional
parameter IV_MODE, which may be set to one of the following constants (defined in class
CL_CRM_BOL_ENTITY):

NORMAL

This is the default takes the relation from the buffer and reads it from the underlying
API, if the buffer is invalid.

BUFFER_ONLY

This takes the relation only from the buffer.

BYPASSING_BUFFER

This reads the relation from the underlying API ignoring the buffer.

Non-cacheable relations are read from the underlying API, ignoring the given mode. Being
non-cacheable is an unchangeable model property of a relation
(IF_GENIL_OBJ_MODEL~RELATION_IS_CACHEABLE).

 Note

For optimal system performance, use the default mode NORMAL.
Synchronization issues that can be solved with bypassing the buffer lead to an
error. These errors should be investigated. Sometimes the underlying business
logic does not allow buffering. If that is the case buffering should be incorporated

3 Advanced Features of the BOL Application Programming Interface

42 <January 2009>

in the model. However, decide this measure very carefully because it is a global
setting.

3.8.3 Preloading BOL Views
If you need to synchronize a larger set of entities with relations, the above methods are
ineffective. For that reason, you can load a well-defined part of the object model with a given
start entity or set of entities at once. This model part has to be defined as a BOL view in
Customizing for Customer Relationship Management under CRM Cross-Application
Components Generic Interaction Layer/Object Layer Define Views.

Each BOL view is assigned to a specific component set and has a unique view root, which is
either a BOL root object or access object. The related object types and their relations are
specified in a table.

After completing the customizing, method PREFETCH_VIEW can be called on the BOL core.
It takes the view name and a collection of view root entities as input. The model part defined
by the view is read for each entity in the collection and stored in the buffer effectively.

You can also apply a view directly to a search result of a query service. Set the name of the
view on the query service instance with method SET_VIEW_NAME.

3.8.4 Locking with Synchronization
After setting a lock it is sometimes necessary to synchronize the BOL buffer for the locked
entities with the current database state for the following reasons:

 The entity could have been changed by someone else since the last read operation.

 The last lock attempt failed, because the entity was already locked. Due to the failure,
the entity was set to read-only mode. When trying to lock the entity again, the property
modifiers have to be refreshed.

Method CL_CRM_BOL_ENTITY->LOCK takes an optional parameter IV_REREAD. By
default, it is set to ABAP_FALSE. If it is set to ABAP_TRUE the full aggregation hierarchy of the
locked root entity is invalidated in the buffer and synchronized at the next access.

 Note

With display mode support, this synchronization always takes place. For more
information, see Display Mode Support [page 23].

3.8.5 Buffering of Query Results
Queries can return a big amount of objects and therefore can considerably increase the
memory consumption of the BOL buffer. The BOL reset is the only way to clear the BOL
buffer, but it is not easy to control the memory consumption when frequent searches happen.
However, many query services return Query Result Object as aggregation of actual entities
for an efficient result display.

As of release WEBCUIF this can be further leveraged by not adding them to the central BOL
buffer. This now is the default setting for simple and dynamic query services. Adding the
result to the central buffer has to be enforced by setting optional parameter
IV_ADD_QRESOBJ_2_BOL_BUFFER of method GET_QUERY_RESULT to ABAP_TRUE.

Without registration in the central buffer, query result object instances live with result
collection, thus their lifetime is controlled by the application program. This also means that
the object instances are no longer unique.

3 Advanced Features of the BOL Application Programming Interface

<January 2009> 43

3.9 BOL Reset
Since the BOL buffer and the message services permanently collect but not release
information the amount of data constantly grows with time. Therefore a mechanism is
necessary to get rid of all the buffered/collected data.

Currently, the only possibility is the BOL core reset using method CL_CRM_BOL_CORE-
>RESET. This method clears all known buffers and messages. After the method has run you
can also call the ABAP garbage collector explicitly to finally remove all freed objects.

In the CRM UIF application, a BOL reset is automatically triggered by the framework
whenever the user switches work center by clicking in the navigation bar.

All entity instances are useless after the BOL reset. Further operations on them cause
runtime exceptions. This also applies to entities contained in collections for which the reset
survival mode is activated (see BOL Reset Survival Mode [page 33]). The reset survival
mode does not preserve the actual entity instance. Only the related object is memorized and
a new entity instance is created for it. To keep the current entity instances, you can provide
an exception list when calling method RESET.

The BOL core raises event RESET_TRIGGERED when the BOL reset starts and event
RESET_FINISHED when it finishes. During the BOL reset most BOL API operations are not
possible. The state of the BOL core instance can be checked via its public attribute
RESET_RUNNING.

The BOL reset clears all entities from the buffer. For these entities, event DELETED is raised.

 Note

The event DELETED being raised during BOL reset does not mean that the
object is actually deleted.

The BOL reset also triggers the reset of loaded GenIL components, so it might be necessary
to perform it to close connections to remote systems when closing a session. Restoring data
after the reset can be prevented by setting optional parameter IV_NO_RESTORE to
ABAP_TRUE.

4 Interface Classes

44 <January 2009>

4 Interface Classes
4.1 Core
CL_CRM_BOL_CORE is the most important class of the BOL Application Programming
Interface (API). There is only one instance of it within each session and it cannot be lost or
deleted. The BOL core is the central service provider for API classes and it communicates
with the underlying business object implementation. You can use the core services directly,
but it is strongly recommended to use the more comfortable API classes, such as query
services or entities.

4.2 Query Services
Generic query services are provided by the classes CL_CRM_BOL_QUERY_SERVICE and
CL_CRM_BOL_DQUERY_SERVICE. Each instance corresponds to a distinct query object. It
stores query parameters but does not aggregate the query result.

4.3 Entities
The class CL_CRM_BOL_ENTITY is a generic representation for business object segments
in the BOL. Each instance is a unique representation for a specific part of a business object.
You can access data using interface IF_BOL_BO_PROPERTY_ACCESS. Entities are
centrally managed and cached.

4.4 Collection
A collection or list of generic objects is represented by interfaces IF_BOL_BO_COL and
IF_BOL_ENTITY_COL and underlying classes CL_CRM_BOL_BO_COL and
CL_CRM_BOL_ENTITY_COL (among others). A collection provides global iteration, which
changes the global focus. Using the local iterators does not change the global focus. It is
possible to add and remove objects that are referenced, but not owned by the collection.

4.5 Transaction Context
The transaction context is represented by interface IF_BOL_TRANSACTION_CONTEXT.
Depending on the actual instance of the interface, the scope of the represented transaction is
a single root object instance, all modified root object instances, or any explicitly built subset in
between.

The BOL core aggregates the global transaction context, which includes all modified root
objects. The global transaction context logs all modifications automatically. A single BO
transaction context can be accessed using the entity it belongs to.

5 Checkpoint Groups

<January 2009> 45

5 Checkpoint Groups
To highlight important places for debugging and to introduce expensive consistency checks,
some checkpoint groups have been introduced. Checkpoint groups are activated with
transaction SAAB (Assertions and Breakpoints) in the development environment.

5.1 BOL Checkpoint Groups
The following BOL checkpoint groups are available:

 BOL_ASSERTS

This checkpoint group includes expensive checks for inner consistency and for the
correct use of the display mode. If the checkpoint is activated, any attempt to change
entities in display mode is detected. You can activate this checkpoint group in
development and test systems to get early notice of problems related to the BOL
usage.

 BOL_MODIFY_WATCH

This checkpoint group defines important breakpoints, which can be used to track the
data transport from the business object to the generic interaction layer (GenIL), the
merge back of data returned into the BOL buffer, ID adjustments for new entities, and
buffer invalidation of changed entities.

 BOL_COLL_AUTOCLEAN

This checkpoint group activates the auto cleanup mode for collections as default.
This may lead to memory problems, so it should only be used for testing purposes or
compatibility purposes with framework versions SAP_ABA 7.0 and older.

5.2 Related Checkpoint Groups
For detailed investigations and debugging, it is required to break in the GenIL, which gives
access to data persistency.

The following related checkpoint groups are available:

 GENIL_DC_CHECKS

This checkpoint group activates consistency checks for the data containers.

 GENIL_GENERAL_CHECKS

This checkpoint group activates general checks in the GenIL layer.

 GENIL_MODEL_CHECKS

This checkpoint group activates consistency checks for the object models of the used
GenIL components.

 GENIL_LOCK

This checkpoint group stops the ABAP debugger if an entity is to be locked.

 GENIL_SAVE

This checkpoint group allows investigations of the save process.

 GENIL_READ

This checkpoint group breaks in the read method of the GenIL core
CL_CRM_GENERIC_IL_NEW. It allows detailed investigations of the communication
with the underlying GenIL component responsible for a specific business object.

5 Checkpoint Groups

46 <January 2009>

 GENIL_MODIFY

This checkpoint group breaks in the modify method of the GenIL core.

6 Inner Details and Debugging

<January 2009> 47

6 Inner Details and Debugging
This section presents further aspects of the business object layer (BOL). The UML diagrams
below show the connection between the classes involved and their main attributes.

6.1 BOL Entities
BOL entities are managed by the BOL entity manager and use classes of the GenIL to hold
their data.

CL_CRM_BOL_ENTITY_MANAGER

entity_tab

CL_CRM_GENIL_CONTAINER_OBJECT

data_ref

CL_CRM_BOL_ENTITY

my_manager_entry

parent

1

1

1

0..n

#container_proxy

In the diagram above:

 All entities are managed by the entity manager: It assures the uniqueness of entities
and buffer access.

 Each entity holds a reference to its manager entry. The manager entry includes
values such as the invalid and delta flags. Holding these values in the ENTITY_TAB of
the entity manager enables efficient BOL table operations on all entities, e.g.
CL_CRM_BOL_CORE->MODIFY.

 An entity is a wrapper for a GenIL container object
CL_CRM_GENIL_CONTAINER_OBJECT belonging to a data container. This object is
referred to as CONTAINER_PROXY and holds the attributes, properties, and relations
of an entity.

6.2 Collections
Various collections reference a set of BOL entities and offer convenient access to their
properties.

6 Inner Details and Debugging

48 <January 2009>

<<Interface>>

IF_BOL_BO_PROPERTY_ACCESS

1

0..n

CL_CRM_BOL_BO_COL

entity_list

CL_CRM_ENTITY_COL

entity_list

CL_CRM_BOL_QUERY_SERVICE CL_CRM_BOL_ENTITY

<<Interface>>

IF_BOL_BO_COL

1

0..n

In the diagram above:

 A collection is represented by interface IF_BOL_BO_COL and can either be an entity
collection CL_CRM_ENTITY_COL or the generalized business object collection
CL_CRM_BOL_BO_COL.

 A BO collection can hold entities (CL_CRM_BOL_ENTITY) and query services
(CL_CRM_BOL_QUERY_SERVICE).

 Access to the properties of BOL objects is offered by the interface
IF_BOL_BO_PROPERTY_ACCESS with its standard access methods, such as
IF_BOL_BO_PROPERTY_ACCESS~GET_PROPERTY,
GET_PROPERTY_AS_STRING or SET_PROPERTY.

	1 Introduction
	1 Introduction
	1.1 BOL Versions
	1.2 Overview

	2 Basic Features of the BOL Application Programming Interface
	2.1 Setting up a BOL Instance
	2.2 Component Sets and Components of the Generic Interaction Layer
	2.3 Issue Queries
	2.3.1 Simple Queries
	2.3.2 Dynamic Queries

	2.4 Read Access to Business Objects Using Entities
	2.4.1 Access Attributes
	2.4.2 Access to Related Entities
	2.4.3 Further Operations on Entities

	2.5 Changing Business Objects Using Entities
	2.5.1 Transaction Contexts
	2.5.2 Locking Entities
	2.5.3 Modifying Entity Attributes
	2.5.4 Creating Entities
	2.5.5 Deleting Entities
	2.5.6 Execution of Entity Methods

	3 Advanced Features of the BOL Application Programming Interface
	3.1 Display Mode Support
	3.2 Standard Interface to Access Properties of Business Objects
	3.3 Working with Collections
	3.3.1 Local and Global Iterations
	3.3.2 Searching
	3.3.3 Sorting
	3.3.4 Filtering
	3.3.5 Changing the Collection Content
	3.3.6 Single and Multi Select Support
	3.3.7 Auto Cleanup Mode
	3.3.8 BOL Reset Survival Mode
	3.3.9 Specialized Collections
	3.3.9.1 Unique Type Collections
	3.3.9.2 Unique Instance Collections

	3.4 Transaction Handling
	3.4.1 Transaction Context Types
	3.4.2 Transaction Cycle
	3.4.3 Collective Transactions and Change Tracking
	3.4.4 Tracking Transaction State

	3.5 Advanced Entity Features
	3.5.1 Input Readiness and Entity Property Modifiers
	3.5.2 Excluding Entities from the Central Modify

	3.6 Business Error Handling
	3.7 Mass Operations Using the BOL Core
	3.8 Buffering Issues
	3.8.1 Entity Properties
	3.8.2 Entity Relations
	3.8.3 Preloading BOL Views
	3.8.4 Locking with Synchronization
	3.8.5 Buffering of Query Results

	3.9 BOL Reset

	4 Interface Classes
	4.1 Core
	4.2 Query Services
	4.3 Entities
	4.4 Collection
	4.5 Transaction Context

	5 Checkpoint Groups
	5.1 BOL Checkpoint Groups
	5.2 Related Checkpoint Groups

	6 Inner Details and Debugging
	6.1 BOL Entities
	6.2 Collections

