PPF
Post Processing Framework
Guidelines for application developers

June 30, 2003

Contact Persons: Daniel-Alexander Heller (PPF)

PPF

Contents:
I PPFE OVEIVIEW auuenuerreenrrensrinsnessssesssessssessssssssessssssssssssssssssssssssssssssassssssssassssssssasssssssssssssssssassssssssase 4
2 PEOPAFALION couuaaennenvereosssrvsssossssssssssssssssosssassssssssssssssssasss 5
2.1 Necessary Classes 5
The implementation steps are explained using the example of a demo application. The demo application and all
mentioned classes are available in all systems (transaction SPPFDEMO, development class SPPF_DEMO). 5
2.1.1 APPLHCATION CLASS ...euvieniieiieiiieiieeiieettett et et et e eaestestee st eseesseasseesaesseensaenseansesssesssesseenseenseassessseassenseensensenn 5
2.1.2 APPlIcatioN-SPECIfIC PIOCESSINGeeovieiieiieiieieeiesterte et ete e stte e e bt esbeebessbessaesseesseeseessesssesssesssenseesens 9
2.2 Customizing 15
2.2.1 Define NeW APPIICALIONouiiiiiiiiieeiet ettt ettt et et e bt e e et eeatesseesbeesbeeteeneeeneeeae 15
222 Defining the Action Profile.........cooiiiiiee ettt s ene 16
223 Define Action Definitions for the Action Profile..........ccooiiiiiiiiiiiieeee e 17
224 Details for the Action DefiNitioncoeiieiiiiiiiiiiei ettt st ene 18
2.2.5 Assignment of Processing Types for an Action Definition...........cccecveiiriiiienieiineee e 20
2.3 Determination and Merging of Actions 23
2.3.1 Determination (Condition COnfiguIation)..........ceecvereveiieiienieniierieeteeeeeeesteesteesseesessesaesseesseesseessesssenes 23
2.3.2 ACHON IMEIZINEZ ... vivieiieiieieete et ete et e ett et esteesbeeebesssesseesseesseesseenseasseessesssansaesseessaassesssesssesssesseenseanseessenns 28
3 Interaction Between Application and PPF Gt RURTIMEuueeeveueeevseressersssnrssssssssssssssssssnes 29
3.1 Calling the PPF 29
3.2 Processing Actions 32
3.2.1 IMMEAIALE PIOCESSINGveetieniieie ettt ettt ettt et ettt e a e st e et e et e e teenteemeesseesseenseeseeneeeneeens 32
322 Processing with DOCUMENt POSTING...........ccoieiieiieiiiieie ettt et ene 32
323 LateT PrOCESSIIIE .. eeteeteetiete ettt ettt et et et et e st eee e e ss e e sae e et e et ene e e s e e es e e st e st enseenseeneesmeesneenseenseenseenneans 32
32.4 Manual Triggering of Processing in the Dialog.........coviiiiiiieiiiii e 32
3.3 User Interface at Runtime 33
3.3.1 Standard USEr INEETTACEcc.uiiiiiiiiiieet ettt sttt ea et et et st saeeaeeneens 33
332 Connection of Generic Object Services (GOS).....uiiiiriiriieriieieeie ettt et e e e e sesssessaesseeseas 35
3.4 Transaction Concept 36
34.1 L@) 74 T PRSP 36
342 L@ o) 1< o1 o Yo) PRSP 36
4 Administration USer INLEITACEueeevsueressrersssreiosseisssanisssasssssassasssses 38
S EXIONAIDILILY uueennneennnenonnnencnnencsnnnicsnnncssnsssssssssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssssssssssssss 3 9
5.1 Business Application Add Ins (BAdIs) 39
5.1.1 Exit for the printer determination (PRINTER _DETERM _PPF)ccccioiiiiiiiiiiiieiieeeeeee e 39
5.1.2 Exit After Generated Action (TRIGGER _EXECUTED)cocouiiiiiiiiieiiieiiecieeeie et 39
The BADI has the application names as the filter value. The action is also transferred and can
deliver its processing status (successful, with error) or other information. 39
5.13 Exit for Context Extension (CONTEXT EXTEND PPF)....cccocooiiiiiiiiiiiniiinincciceccncnenceeeeee 39
5.1.4 Exit for Completion of Processing Options (COMPLETE _PROC PPF).......cccccvviiiiiiiiiniiiiieciieeieeee, 40
5.1.5 Extend Container for Condition Evaluation (CONTAINER _PPF).....c.ccccoiiiiiiniiiiiiieeeeeee e 40
5.1.6 Exit for Execution of Actions (EXEC_METHODCALL PPF)ccccoviieiniiieiieeeeieeeeeeeeee e 40
5.1.7 Exit for Getting Possible Partner Functions of an Application (GET PARTN _ROLES PPF)............... 41
5.1.8 Exit for Double Clicking on Values in the Display (GRID CLICK PPF).....cccccceeviiiiiiiniieieeciieeveeee, 41
5.1.9 Exit for Checking if Deletion of Action Profile is allowed (CONTEXT DELETE PPF)........cccccccuce... 41
5.1.10 Exit for evaluation of schedule conditions (EVAL_SCHEDCOND PPF).......cccccceiiiiiiiiiiieieieirene 41
5.1.11 Exit for evaluation of start conditions (EVAL _STARTCOND PPF)cccccvviriieiiiiiie e 41
5.1.12 Exit for Adding further data to workflow container (WF_CONT_MODIFY PPF)....cc.cccocvviiniinirnnns 41
5.2 PPF Interface 42
5.2.1 Connection of Your Own Processing OPtiONScc.ceveeriieierierienieniienieente ettt sieebe e s s nees 42
522 Connection of a Logic for the Determinationccccceiieriiriiiiiiiieieeee e 42

Page 2

PPF

523 Connection to a Separate Logic for ACtON MEIZINGcecvevuirierierieriienteerieereeeesteseeeieeseesesaeseneses
O APPCIAIX cuueennnnnerioissaerinssssassiossssasssssssssssssssssssasss

6.1 Description of Interfaces

6.1.1 CL MANAGER PPF....oooooeieeeeeeeeeeeeeeee e eeeees e es s e e eeee s s e ees e s eeseee s es e ees e eseseesaess e eesees
6.2 Class Diagram

6.2.1 CUSTOMIZING CLASSES ...eeutieutieiieeiieeiie sttt ettt ettt et et e e et e eetesaeesbeesbe e bt entessteeaeeebee bt enbeenteemeesneesaeenees

6.2.2 RUNEIME CIASSESeuttentietieieeie ettt ettt ettt ettt s b e st e e st e et e et e e et e eseeeb e e b e e bt embeemseemeesaeesbeenbeenseeneeeneeans

6.2.3 SEIVICE CLASSES ...eeuveeutienieeiie ettt et ettt et e e st e s bt et e e et et e e st et e e eb e e bt e teemteeseesaeesaee bt enbeenteemeeeneenbeenseennean
6.3 Sequence Diagrams

6.3.1 Calling the PPE ..ottt ettt s e s e s teesae e bt esaessseesse st aenseenseensennsessnesnnenes

6.3.2 Method DETERMINE Part 1.......couooiiiiiiiiieieneeetete ettt ettt sttt eneen

6.3.3 Method DETERMINE Part 2.......couoiuiiiiiiiiiieie ettt sttt st st et

Page 3

PPF

1 PPF Overview

The Post Processing Framework (PPF) is a tool for the generic execution of functions and processes. It
provides the applications with a uniform interface to any actions. Actions can be outputs in the traditional
sense such as print, fax, mail, or XML but functions such as the triggering of workflows or any method call
can also be triggered. Which actions this eventually are, is determined by an individually configurable or a
self-programmable determination technology, depending on the application document data. Execution of the
action can also take place depending on the data of the application document.

Therefore, the PPF automatically generates actions from document data (for example, delivery notes or
order confirmations, generation of an item in the document, creation of a subsequent document).

PPF additionally provides uniform action administration. There is status management and a processing log
for every action.

The PPF itself was programmed with ABAP objects. In addition, various object services were used.
However, you do not have to program your PPF application in an object-oriented manner to use the PPF.

Overview graphic:

Page 4

PPF

2 Preparation

2.1 Necessary Classes

Create the following classes in the Class Builder:

e A persistent class (in the sense of Object Services) that represents the application object (for example:
CL_BOOK_PPF)

e A partner class that represents a partner of an application object (for example:
CL_BOOK_PARTNER_PPF)

e A context class that encapsulates all information for the PPF (Example: CL_DEMO_CONTEXT_PPF)
e A processing class provided Smart Forms are used (Example: CL_PROCESSING_DEMOBOOK_PPF)
o A BADI implementation provided the processing method call is used

o Workflow template provided a workflow is to be triggered

The implementation steps are explained using the example of a demo application.
The demo application and all mentioned classes are available in all systems
(transaction SPPFDEMO, development class SPPF_DEMO).

The classes to be implemented by the application are shaded in gray in the following graphics. All other
classes are provided by the PPF.

2.1.1 Application Class

The PPF expects a persistent class so it can handle different types of application objects.

In most cases, the application object is not implemented as a persistent class, or it is a BOR object. You
must then create a persistent proxy class that does nothing other than refer to the actual application object.
The key of the application object also appears as an attribute of the proxy class. The application object
implements the interface IF_LOCK_PPF and thus both methods for locking and unlocking the application
object. These two methods are important so that an action does not operate on documents that are already
locked. If the interface is not implemented, this can result in actions being executed twice under certain
circumstances. Generally, the interface must be implemented.

When using the workflow conditions, a BOR object is necessary in addition to the persistent application
object since the schedule condition and start condition is defined on attributes of the BOR object (more on
this in the relevant sections).

The implementation of IF_LOCK_PPF is important so that the action does not change document
N data for a document that is being processed. The implementation also prevents the same action
‘ being executed multiple times in parallel processing.

Page 5

PPF

enqueue / dequeue o necessary for using necessary for AN
business document time rules workflow conditions
' | '
1 1 1
1 1
IF_LOCK_PPF
IF_TIME_CONTEXT_PPF IF_BOR_OBJECT_PPF
+ENQUEUE()
+DEQUEUE() +GET_TIME_CONTEXT() +GET_BOR_OBJECT()
implements
Tem———— application class Iﬁ
CL_BOOK_PPF T
AD:CHAR10 =-____
+IF_LOCK_PPF~ENQUEUE() ~~==--____
+IF_LOCK_PPF~DEQUEUE() ["==--_____ — :
+IF_TIME_CONTEXT. PPF~GET_TIME_CONTEXT() - - ~| application object
+IF_BOR_OBJECT.PPF~GET_BOR_OBJECT() :(de”t'f'ed by business
ey

Generation of the object at runtime:

DATA:
* reference to application/proxy object
appl_object TYPE REF TO c¢1_book_ppf,

book_id TYPE CHAR10.

create a persistent application object via the class agent of it’s co-class
object services create 2 service classes for any persistent class
ca class contains all persistency services, e.g. creation of persistent object
create application object, key (book_id) must be set before
appl_object ?=
ca_book_ppf=>agent->if_os_factory~create_persistent_by_key(
i_key = book_id).

Partner class

Create a partner class for the document partner that implements the interface IF_ PARTNER_PPF. The
document partners are collected in a collection and transferred to the PPF. The class of the partner collection
already exists.

A partner consists of a partner function, partner number, and the data assigned from the central address
management (CAM: ZAV “Zentrale Adressverwaltung” in German): Person number, address number, and
address type. This data must be made available for every document partner by the application.

The PPF determines the relevant communication data for fax processing or mail processing using the
address numbers transferred.

Page 6

PPF

CL_PARTNER_COLL_PPF| IF_PARTNER_PPF
Belegpartner
<
+ADD_ELEMENT() +GET_ZAV_ADDRESS()
+GET_PARTNER()
implements }
partner class Ej §
DR CL_BOOK_PARTNER_PPF
T -PARTNER_NO : PPFDPARTNO

R 'PARTNER_ROLE : PPFDPARTRL
~~-|:zAV. ADDRESSNO : AD_ ADDRNUM
-ZAV_ PERSNO : AD. ADDRNUM
.ZAV_ ADDR TYPE : PPEDADRTYP
-PARTNER_TEXT : TEXT60
+IF_PARTNER_PPF~GET_ZAV_ADDRESS()
+IF_ PARTNER PPF~GET PARTNER()

Generation of a partner object at runtime and appendage to the partner collection:

DATA:
* reference to partner object

partner TYPE REF TO c1_book_partner_ppf,
* reference to partner collection

partner_coll TYPE REF TO cl1_partner_coll_ppf,

* create partner collection

CREATE OBJECT partner_coll.

* create first partner object

CREATE OBJECT partner

EXPORTING ip_partner_role = 'LF'
ip_partner_no = '1234567890"'
ip_partner_text = 'Vendor Meyer'
ip_zav_addressno = '0000015762'
ip_zav_persno = '0000015763"

ip_zav_addr_type = '3'.

* append partner to partner collection

CALL METHOD partner_coll1->add_element(partner).

Context class
The context class encapsulates all the application data necessary for the PPF:

e Application name
e Reference to the application object (instance of the application class or proxy object)

Page 7

PPF

¢ Reference to a partner collection

e Further application attributes (fields that can be included as sort fields in the management table of
actions)

Note when creating the context class that this is not marked as final. The customer should potentially have
the possibility to extend this using further attributes. This is only possible provided the class has not been
marked as final.

The context class redefines the method GET_VALUE_OF ATTRIBUTE of class CL_ CONTEXT_PPF. This
serves dynamic attribute accesses that are not yet supported in the ABAP standard. For the redefinition,
simply copy the coding from the template and set it again in the method. This step is necessary so that the
method is executed for your action profile class itself and can access its attributes.

CL_CONTEXT_PPF

NAME PPFDCNTXT

APPL REF TO OBJECT

APPLCTN PPFDAPPL

PARTNER REF TO CL_PARTNER_COLL_PPF

CL_PARTNER_COLL_PPF

+ADD_ELEMENT()

GET_VALUE_OF_ATTRIBUTE

inherits from

REF TO

CL._DEMO_CONTEXT_PPF

-NAME : PPFDCNTXT

-APPL : REF TO OBJECT _ | context class
-APPLCTN :APPLDAPPL = | __----""7"

-PARTNER : REF CL_PARTNER_COLL_PPF
-ID : CHAR14

-PAGECOUNT : NUM4

-STATUS : PPFDDSTAT

-CREATOR : SYUNAME

+GET_VALUE_OF_ATTRIBUTE() : REF TO
CL_BOOK_PPF
-ID : CHAR10
Fill the context instance at runtime:
DATA:
* reference to context object
context TYPE REF TO c1_demo_context_ppf.
* create context object
create object context.
* set context attribute
context->applctn = 'BOOK'. "Declared in Customizing (see chapter 2.2)
context->name = 'BOOK". "Declared in Customizing (see chapter 2.2)

context->appl appl_object.

context->partner = partner_coll.

Page 8

PPF

* additional context fields

*.these fields can be used as sort fields for a later processing of the actions

* the fields can be overtaken into the database table for actions (PPFTTRIGG)
context->ID = ‘1234’ .

context->creator = sy-uname.

2.1.2 Application-Specific Processing

2.1.2.1 Using Smart Forms Processing Options

If Smart Forms are used for the action, you must program a processing class. Here, the PPF helps you as
much as possible.

Smart Forms are function modules whose interface consists of a general part that is independent from the
relevant Smart Form and an application-specific part. Rather, the PPF cannot directly call the function
module. However, it fills the general part of the interface.

Your processing class must also inherit the processing method EXEC_SMART_FORMS from the PPF class
CL_SF_PROCESSING_PPF that serves as the copy template and sets the general parameter of the Smart
Forms function module. You only need to fill the specific parameter.

You must also set the language of your Smart Form here. If your application object involves a BOR object
then you can link the action (Smart Form) with your BOR object, or optically archive the action using Archive
Link.

CL_SF_PROCESSING_PPF

+EXEC_SMART_FORM()

JA)
processing class for
inherits from ,’Lsmart form processin
,l
s
/) smart form function module
/ in: common parameters
‘ in: application specific
execute arameters
CL_PROCESSING_DEMO_PPF with smart form specific parameters out:pcommon parameter
=—o0
+EXEC_SMART_FORM()
+PROCESS_SMART_FORM() common out parameters
of smart forms function module

The copied processing methods in the example application are as follows:

METHOD process_smart_form .

* function name

DATA: function_name TYPE rs381_fnam,

Page 9

PPF

dummy (254)

TYPE c.

* get the function name for this smart form
CALL FUNCTION 'SSF_FUNCTION_MODULE_NAME'

EXPORTING
formname
* VARIANT
* DIRECT_CALL
IMPORTING
fm_name
EXCEPTIONS

no_form

ip_smart_form

function_name

no_function_module = 2

OTHERS

IF sy-subrc <> 0.

* add an error message to processing protocol
MESSAGE 1015 (sppf_media) WITH ip_smart_form.
CALL METHOD c1_log_ppf=>add_message

EXPORTING

ip_problemclass

ip_handle
EXIT.
ENDIF.

get application specific data

N

cp_application_log.

DATA: To_book TYPE REF TO c1_book_ppf,
T1s_book TYPE ppftbook.

To_book ?= io_appl_object.

get key fields of application object

1s_book-id = To_book->get_id().

1s_book-author = To_book->get_author().

Ts_book-title = To_book->get_title().

1s_book-pagecount =

To_book->get_pagecount().

1s_book-creator = To_book->get_creator().

T1s_book-datecreate

1s_book-datechange

To_book->get_datecreate().

To_book->get_datechange().

Ts_book-status = lo_book->get_status().

T1s_book-isbn = To_book->get_isbn().

cast imported object so that we can refer to its attributes

Page 10

PPF

fill this parameter if your application object is a BOR object
* the output (smart form) will be linked with the BOR object

* dis_mail_appl_obj-LOGSYS

* is_mail_appl_obj-0BJTYPE
* is_mail_appl_obj-0BJKEY

* dis_mail_appl_obj-DESCRIBE

M fi11 archive parameters for archive 1ink ---------cummooonn-
IF is_output_options-tdarmod = '2' OR
'3'.

is_output_options-tdarmod
archive_index_tab
READ TABLE ct_archive_index_tab INTO Ts_archive_index INDEX 1.
just fill the id of your actual BOR object

¥ deaaaa >
* Ts_archive_index-object_id = 'ID_OF_YOUR_BOR_OBJECT"'.
o >

IF 1s_archive_index-object_id IS INITIAL.
DELETE ct_archive_index_tab INDEX 1.
ELSE.
MODIFY ct_archive_index_tab FROM 1s_archive_index INDEX 1.
ENDIF.
ENDIF.

determine here the language of the smart form and set it
default language is the system language

is_control_parameters-langu = language_of_my_smart_form.

* call function to process smart form

CALL FUNCTION function_name

EXPORTING
archive_index = is_archive_index
archive_parameters = is_archive_parameters
control_parameters = is_control_parameters
mail_appl_obj = is_mail_appl_obj
mail_recipient = is_mail_recipient
mail_sender = is_mail_sender
output_options = is_output_options
user_settings = ip_user_settings

-------- additional fields have to be filled by the application--------
is_book = 1s_book

Page 11

PPF

IMPORTING

document_output_info = es_document_output_info

job_output_info = es_job_output_info

job_output_options = es_job_output_options
EXCEPTIONS

output_canceled =1

parameter_error =2

OTHERS =3

IF sy-subrc <> 0.
* add an error message to processing protocol
CASE sy-subrc.
WHEN 1.
MESSAGE €016 (sppf_media).

ENDCASE.
CALL METHOD c1_log_ppf=>add_message
EXPORTING

ip_problemclass 1!

ip_handle = cp_application_log.
ENDIF.
* get error table
CALL FUNCTION 'SSF_READ_ERRORS'
IMPORTING

errortab = et_error_tab.

ENDMETHOD.

The return parameter is evaluated centrally using the PPF. You can add your own entries to the processing
log and should also do this so that the application specific processing routines are also logged. A handle on
the application log is transferred for this as the parameter: ip_application_log. Entries can simply be made
using the interface of the service class CL_LOG_PPF:

Example:
MESSAGE i015(sppf_media) WITH ip_smart_form.
CALL METHOD c1_log_ppf=>add_message
EXPORTING

ip_problemclass 1

ip_handle = ip_application_log.

Page 12

PPF

2.1.2.2 Usage of Processing Method Call

The method calls are created using BADI implementations. The relevant BADI definition (transaction SE18)
is called EXEC_METHODCALL_PPF. You can create an implementation for this definition (transaction
SE19). The interface looks as follows:

FLT_VAL Importing Type PPFDFLTVAL Parameter FLT_VAL of method EXECUTE
I0_APPL_OBJECT Importing Type Ref To OBJECT Reference to application object
I0_PARTNER Importing Type Ref To CL_PARTNER_PPF Message partner

IP_APPLICATION_LOG Importing Type BALLOGHNDL Handle on application log

IP_PREVIEW Importing Type CHAR1 Preview flag

II_CONTAINER Importing Type Ref To IF_SWJ_PPF_CONTAINER Container with parameter values
IP_ACTION Importing Type PPFDTT Name of action definition

RP_STATUS Returning Type PPFDTSTAT PPF: Output status

The filter value is created when the BADI implementation is created and is therefore freely definable. A
description for the filter value should also be entered. For processing, you receive a reference to its
application object and hence have access to the document data. In addition, the document partner, a
reference to an application log (processing log), and a container with parameters are transferred. The
parameter values can be determined in Customizing. After processing, the processing status must be set
correspondingly (processed successfully = 1, processed with errors = 2). If the status is not explicitly set, the
PPF sets the status to processed with errors = 2.

In the BADI-Builder (transaction SE19), this can appear as follows:

Implementation Edit Goto Utilities Enwironment Sy

& 2 dH @@ SHE anon AR @m
Business Add-in Builder: Dispiay implementation COPY_DOCUMENT

i g | gl | | S Def. documentatn || Documentation

dImplementafion name| COPY_DOCUMENT Active
Implementation shor text Generate Subsequent Docurment (Copy)
Definition name EXEC_METHODCALL_PPF

Attributes k Interface

General Data E‘
Package CRM_ACTION_IMPL l;‘
Language DE German
Last changed by SAP Last activated by: SAP
Last change 24 10,2008 14:356:11 Capitalized on 24 10 2000 14:35:28
Type
[wiithin SaP
[Muttiple use
Filter-Depend. Filter type PPEOFLTYAL Enhanceakle
Filter Value far BADI EREC_METHODCALL PPF
&
Defined filters
method Short text Method
COPY_DOCUMENT oFl Generate subsequent document |
=
I D] <

[| MARKR 2| pwilf0313 INS 7

Page 13

PPF

2.1.2.3 Use of the Processing Workflow

No application specific coding is needed here.

2.1.2.4 Use of the Processing of External Sending

The processing of external sending, like Smart Forms, also needs an application-specific logic for data
retrieval and for calling the Smart Form. Creation no longer takes place using a method implementation, but
rather using a BADI implementation. The BADI is called DOC_PERSONALIZE _BCS. The interface is very
similar to the method for Smart Forms processing:

BCS: Filter value for BADI

FLT_VAL Importing Type BCSDFLTVAL DOC_PERSONALIZE_BCS
IS_ARCHIVE_PARAMETERS Importing Type ARC_PARAMS ImageLink structure
IS_CONTROL_PARAMETERS Importing Type SSFCTRLOP Smart Forms: Control structure
SAP Smart Forms: Options smart composer
IS_OUTPUT_OPTIONS Importing Type SSFCOMPOP (transfer)
I0_APPL_OBJECT Importing Type Ref To OBJECT Application object
IP_SMART_FORM Importing Type TDSFNAME Smart Forms: Form name
IS_MAIL_APPL_OBJ Importing Type SWOTOBJID Structure for object ID
IS_MAIL_RECIPIENT Importing Type SWOTOBJID Structure for object ID
IS_MAIL_SENDER Importing Type SWOTOBJID Structure for object ID
IP_USER_SETTINGS Importing Type TDBOOL Selection field (yes or no)
IP_APPLICATION_LOG Importing Type BALLOGHNDL Application log: Log handle
|0_PERSONALIZE_DATA Importing Type Ref To CL_PERSONALIZE_DATA_BCS Service class for the personalization of a mail
ES_DOCUMENT_OUTPUT_INFO Exporting Type SSFCRESPD Smart Forms: Return of document information
Smart Forms: Return when form printing is
ES_JOB_OUTPUT_INFO Exporting Type SSFCRESCL completed
ES_JOB_OUTPUT_OPTIONS Exporting Type SSFCRESOP Smart Forms: Return when starting form printing
ET_ERROR_TAB Exporting Type TSFERROR SAP Smart Forms: Runtime error
CT_ARCHIVE_INDEX_TAB Changing Type TSFDARA SAP Smart Forms: Table with archive indices
C_DOCUMENT_TITLE Changing Type TDTITLE Document title

The logic for calling the Smart Forms is the same as the processing above, for an example, see the
implementation BCS_PROC (transaction SE19).

Page 14

PPF

2.2 Customizing

In Customizing (transaction SPPFC) you make your classes known to the PPF and define the determination
of the outputs: You assign the possible action definitions (for example, delivery note, order acknowledgment,
and so on) to your application. You must define a determination technology for each output type (see section
“Determination and Merging of Actions®).

The definition in Customizing only determines the framework, that is, all potential actions and their possible
processing options are declared. This definition can be used in an additional Customizing step to define
conditions (see 2.3 onwards). The actions only appear when the conditions have been maintained. Definition
in Customizing alone does not lead to the generation of actions.

2.2.1 Define New Application

Transaction SPPFC should never be added to the IMG directly. It can be called in a separate
application specific transaction when the parameter is set for the application.

An application that wants to use the PPF must be entered in Customizing of the PPF. In the initial screen,
you only enter a name and a description. In addition, you can enter the date profile of the application and the
BOR object or the business class here. The date profile and the object type are required for the definition of
the schedule condition. The conditions are based on attributes of the object type and date rules of the date
profile can also be integrated. Here you must also enter the name of your context class.

Since Basis Release 6.10, the application is maintained in a separate transaction (SPPFCADM).

@ BdHICaq SHE ODLD BE @®
Dispiay View "Application"”: Overview
¥
Dialog Structure apolication _‘
< S Application Anpl. Description Date Profile |Ohj. Type
% [C]Action Profile BEP D BUS2201
= GAEHUH Definition _ Procurement Document
e {PioessTn Tes BILLING Billing
BOOK Book managerment
CRM_ORDER CRM Order BUS2AAA115
DNO_NOTIF Wessage 4 BUSTAGA -
\ / / AN B
~ Application [+[][| Description Date profile of Object type
name application of the
application
kg Pogitian... I Entry 1 of &

Page 15

PPF

2.2.2 Defining the Action Profile

An action profile is a collection area for actions in a specific application context (for example, leasing actions,
actions for contracts, and so on).

You can transfer all relevant application data to the PPF using an instance of the context class. If you
maintained the context class at the application level, it does not have to be entered again here when it is
created from new. It is copied as the default value. The same applies for the date profile and object type.

The composite profile flag specifies that a profile is used as composite profile. A composite profile can be
inserted in other action profiles. Thus the actions from the composite profile can be used in the current
profile.

Edit

Selection Criteria

Table View Goto Utilities System

B H I CaQ@ DHE ©han BE @
Dispiay View "Action Profiie": Overview
bS]

Dialog Structure Appl. EOOKE
52 S Action Prafile

57 (] Action Definition
I Processing Types

Help

Cescription Baok management

Action Profile
Action Profile Description Composite Profile E‘
BOOK Book context 0
PROFILE WITH EXTENDED COMT..Profile with Extended Gontext Class |1

A \

\
\\ Used as
— composite
Name of the M Description profile

action orofile

|[E FPosition.. | Entry 1 072

[| MARKR PZ | pwdfd313 | INS

TahleView Edit Goto Selection Criteria Uilities Help

2l H @@ BHE DDo0 BRE @b
Dispiay View "Action Profile”: Details
& | EE

Systamm

Dialog Structure iAction Profile} BOOK [l Composite Profile
2 7 Action Profile
= [CJAction Definitian
I Processing Types

Description Book context

Business Object

Action Profile
. Type and Date
Object Type FPFDEMD Profile for Time
Date Profile :*@ Rules
Used Common Profile | |
Context Class oL MD_CDNTEXT_P
Name of the
/ context class
Actions from this composite
profile are also available [| MARKR pwHfl313 | INS

Page 16

PPF

2.2.3 Define Action Definitions for the Action Profile

An action profile can be assigned various action definitions. An action definition is the smallest business unit
that is to be output or processed — for example, if all delivery notes belong to the 'delivery note’ action
definition, whether they should now be printed, faxed, or output as normal.

You can deactivate an action using the action setting. If the action is set to inactive, it is ignored for action
determinations. It can therefore be 'deactivated’.

The actions in the document can be sorted using the sort function.

By double-clicking on the action definition, you can display the detailed settings.

@ IH Q@@ DHE nDan BHE @B
Display View "Action Definition": Overview

Dialog Structure
5 [CJ Action Profile
=7 Action Definitian
[Processing Types

BOOK (3]
Book context

Action Definition

Sort Order |Inactive W

Action Definition
BOOK ORDER

Description
Book Order
Book sales

File card

Sort for the
display

Deactivate
action

Name of the Description

Positio

action definition

I [| MARKR 2| pwdfD313 | INS

Page 17

PPF

2.2.4 Details for the Action Definition

You can configure an action definition in various ways:

Processing time (immediate processing, when the document is posted, later using a selection report)

Processing times that are not permitted: Here you can enter processing times that make no sense for
this action. For example, Send order confirmation -> Process time immediate. The action order
confirmation may be processed after document editing is complete or using the selection report. The
time immediate is entered here as a time that is not allowed.

Schedule automatically: If the flag is set, the action is scheduled automatically provided the schedule
condition is fulfilled. If it is not set, the action appears in the worklist and can be scheduled manually by
the agent for document editing.

Sorting in the display (in which order should the actions in the document for runtime be displayed,
provided a user interface is included)

Automatic scheduling (X = action is to be scheduled, SPACE = action should be put in the worklist, that
is, the agent can schedule it manually)

Delete after processing (the action is executed and then deleted)

Can be changed in the dialog (after automatic determination, should you be allowed to make changes
and repeat the action definition manually?)

Can be executed in the dialog (the action can take place during document editing, even though no
posting has yet taken place)

Display on the toolbar: Specifies whether the action is to be displayed on the GOS toolbar (provided the
service is used)

Partner function: Default function of the partner to which the action goes — moved in the manual creation
of an action

Partner-dependent: specifies whether a partner determination is to be performed

Selection of a determination technology, that is to be used for this action definition (see section below on
determination)

Selection of a technology for merging of actions: (see section below on action merging)

Sort field 1 — 3: Application specific data that is supplied in the action profile class. Display or processing
can be sorted according to this data

The action description delivers details on the action and can be displayed by the agent for document
editing

Page 18

PPF

Selection Criteria Litilities
2 0H @ BHEE L0 BE @6
Display View "Action Definition"”: Details

v E B e

Edit

Goto

Dialog Structure BOOK
2 [3#ction Profile Description Book context
52 S Action Definition
I Processing Types
Action Definition END
Cescription Book sales

Action Definition k @ Action Description k Action Summarizatn

. . . Action Settings
Settings in detail

Time of Processing Processing using selection report g
Frocessing Time Mot Permited Mo Restrictions el
Sort Order For Display 1

Schedulefutomatically Chaghl in Dialog

[Delete After Processing Executable in Dialog

Display in Toalbox

Partner Determinatian far the Action
Farner dependent PartnerFunction MF
Deszcription MailPartner

Action Determination and Action Summarization
Determin. Tech. Cetermination Using Conditions that Can Be Transport..

Action Summarizatn Set Highest Mumber of Processed Actions

&)

Sort Fields for the Execution of Actions

SortField 1
SortField 2
Sort Field 3

[| MaRKR M| pwam313 | INS 2

The search help for the partner function field can only deliver values if the application creates
and delivers a BAdIl implementation for GET_PARTN_ROLES_PPF. Here you can use the
example implementation for the demo application (GET_ROLES_BOOK_PPF) to get more
information.

Page 19

PPF

2.2.5 Assignment of Processing Types for an Action Definition

Actions always occur using the execution of a processing. Currently, Smart Forms are supported as print, fax
or mail, plus the triggering of workflows and any method call. The new processing external sending can
replace the existing Smart Forms processing and additionally offers further extended functions.

Add a separate configuration for every processing. The settings made here serve as default values and can
be overridden in the conditions.

2.2.5.1 Smart Forms Processing Options

In the Smart Forms processing options, enter the name of the Smart Form used and a processing class with
a processing method, that you have programmed (see section “processing class®). Provided the application
supports optical archiving using Archive Link, the archive parameter archive object type and document type
must be entered. These must first be created in Archive Link Customizing. You can reach Archive Link
Customizing using the transactions (oac2, oac3, oaco). The option archive copies optically archives all
multiple outputs, that is, it also archives identical multiple archives.

TableView Edit Goto Selection WHilities Systemn

Help

&

Display View "Processing Types': Overview
v

Dialog Structure Afion Definition; ~ END

=2 [0 Action Profile

) Action Definition
= Description Book sales

= Processing Types Assignment of
possible processing
; ; : options to an action
Permitted Processing Types of Action Z definition
| |assignmentiChange Using Value Help in List " i
External Carmimunication /]
Smart Farms Fax o |
Srart Forms Mail
Srnart Farms Print |
[+]
KD [[«][]
| Set Processing |
Mail Settings |
Form Mame SPPFDEMO BOOK END
Frocessing Class CL PROCESSIMG DEMOROOK FPF Detailed settings
for Smart Forms
Processing method FROCESS_SMART_FORM 5 processing
Archive Mode Mail Corily e

[| MARKR P2l pwdf313 NS

Page 20

PPF

2.2.5.2 Method Call Processing

This processing enables the execution of any action. A BAdI implementation is called. This enables the
creation of a subsequent document or the creation of an item in the document, for example.

The method can be entered using the F4 help. All active BAdI implementations for BAdI definition
EXEC_METHODCALL_PPF are displayed there.

The processing parameters are freely definable and can be provided with values. Static values are used
here. The values can be changed again in the configuration of conditions.

Example: Create method subsequent offer, processing parameter: Type of subsequent offer

Settings Method Call
Method CREATE_MWEW_BOOK @

Deszcription FPF Demo; Create Mew Book

Determine Proc. Parameter: 4

2.2.5.3 Workflow Processing

Make sure that the implementation was activated, otherwise it is not displayed in the F4 Help.

Workflow templates can also be started using actions. The workflow template is added to it. The business
object must be defined as an input parameter in the container definition of the workflow template. The name
of the parameter must be BUSINESSOBJECT. Using Display/Change, the assigned workflow template can be
edited and a new workflow template can be created using the Create button. The F4 help for the assignment
only displays the workflow templates that support the assigned business object in the action profile.

Einstellunden Warkfow
Warkflowmuster (545301208 @
Beschreibung Buchhbestellung

2.2.5.4 External Sending Processing

The processing of external sending can take the place of the existing Smart Forms processing. It completely
covers its functions and additionally makes it possible to send an attachment, send the outputs to copy
recipients and in further releases it is also possible to send SMSs.

The Customizing settings are similar to the Smart Forms processing options. The name of a Smart Form is
added, a format logic (as implementation of BAdl DOC_PERSONALIZE_BCS) and as the optimization
parameter the type of document personalization can be specified. In recipient-dependent personalization, the
formatting of the document takes place for every recipient, since recipient-dependent data is to be replaced.
When personalization is not recipient dependent (an identical text or mail to all recipients), document
formatting only takes place once for all recipients.

Page 21

Daocument

Farm name SPPFDEMO_BOOK (=)
Format BOOKSALE @
Perzonalization Type Fecipient-specific Variable Replacement

When sending a fax, you have the option of sending a fax cover page. The name of the cover page (Smart
Form) is entered here. The format is fixed. FAX_COVER_PAGE_BCS must always be entered.

FaxCoverSht
Farm Mame BCS_FAY_COYER
Farmat FA=_COVER_PAGE_BCS

Optical archiving is possible. The object type and the document type must be added in the same way as with
Smart Forms.

Archive Mode Send and Archive]
Ohject Type PPEDEMO
Document Type PRFOUTPUT] @ [] Archive copies

Page 22

PPF

2.3 Determination and Merging of Actions

2.3.1 Determination (Condition Configuration)

The determination returns templates for actions if the previously defined conditions are fulfilled by the
application data. The application data is transferred as a BOR object (for determination using conditions that
can be transported) or attributes of the action profile class (for determination using conditions). The
determination technology defines which conditions must be fulfilled by which application data.

A condition is encapsulated by a rule. You can think of the rule as an application data filter that controls
which data is finally released to the condition. A template for an action is appended to the rule. It is returned
as soon as the condition is fulfilled (and thus the rule).

The determination technology is appended to each action definition. Thus different action definitions can use
different determination techniques. The determination technology itself manages one or more rules.

CL_TTYPE_PPF CL_CONDITION 0.1 |CL_TRIGGER_TEMPLATE

Schedule Condition

As standard, a general tool for condition evaluation is used. In Message Control condition technology was
used for this purpose. Currently, the PPF offers the workflow condition editor and a self-developed
determination technology with generated coding conditions as tools. The determination technology with
generated coding conditions should no longer be used. It will not be developed any further. Instead, the
workflow conditions should be used. The workflow conditions can also be transported, but the coding
conditions cannot.

In release 6.30 there is a new condition logic available. These conditions are similar to the generated coding
conditions, however they are realized by BAdl implementations and thus they are also transportable.

Page 23

PPF

2.3.1.1 Workflow Condition Editor (Determination Using Conditions that Can Be Transported)

For Basis Release 6.10, the workflow condition editor replaces the old PPF determination technology. The
condition editor provides a graphical user interface and a transport connection. Thus, the applications can
preconfigure conditions (for example, document complete, example configurations) and deliver them to the

customers.

To ensure good performance, there should be generated workflow conditions. The user interface is similar to
PPF condition evaluation. The condition tool is simply a different one.

Conditions Edit Goto System

Help

(] 2ja B €@ CHE ODLOD AR @M

Conditions for Actions: Change

=

G

vialo[t | [@a[8

Scheduling of Actions
=2 =4 Action Profile

8 Profile with Extended Cc

(ALl [[+]

AEEIEER

Book context

QK| ActionDef. |N...|F'rocessing Type

|Processing

Planning Condition |Start Condition | 5top]

Book sales 1 hail

Mail Output

@ Booksales 2 BExernal Communication Standard Communication Method

@ File card 1 Wail

Mail Output

@ Book Order 1 ethod call

Create MNew Book

Book Is in Poor Co..

Oveniew | ActionDetails | ScheduleConditn | StartCondition |

Schedule
Flanning Condition Mo Condition (Seen as Fulfilled)
® Schedulesutomatically
1 In the \Worklist
Action Summarization Maximum 1 Successful Processed Action

Assigned Processings

Smart Forms Mail

Time of Processing

Start Condition Mo Condition (Seen as Fulfilled)
Time of Processing Processing using selection report

Fartner Determination

Partner Function HP
Description MailP artner
Partner Mo.

Default Settings frm Action Definition

b [AEC (1) (000) P2 | pwdlf313 | INS o

The conditions and settings can be transported and can thus be delivered.

Page 24

PPF

A condition can look as follows:
Overview o ActionDetails ScheduleConditn -

MName Book Is in Poor Condition ;'
Schedule Condition

&B00K_DAMAGEDE = %
The schedule condition decides whether an action
should be scheduled for processing. An action is
therefore only generated if the schedule condition 15

met.
|6 DisplayParameter | &2 Change Parameter | Select an exsting schedule condition using the input
help or create a new one.
EditCondiion | [@ Delete Conditon | =

The parameter BOOK_DAMAGED is checked. If the book is damaged, the condition is fulfilled and the
relevant action is scheduled.

The user interface for merging the conditions is the workflow condition editor. Here the conditions are simply
brought together using the mouse. All attributes of the business object (here PPF demo object) and further
parameters (here: BOOK_DAMAGED) are available.

Cperatars Logic Expression 1 Description
|ﬂ | Ex | And [L0 Systern Fields |Shu:urt description of expression or system
<! x| || or| |7 3 container
E CE 8 BOOkK_DAMAGED BOOK_DAMAGED
x WE 1 it [* &% PPF Demo Ohject | Current Object
Parentheses

(]| P B8 o]

NFERE 2 B>
Condition
Mot | |Express. 1 |Operator| |Express. 2 |Andior
EROOK_DAMAGEDE ﬂ H

[]v]

vieZMS D a8l

Page 25

PPF

2.3.1.2 PPF Determination Technology (Determination Using Conditions)

The determination technology developed by the PPF looks as follows:

This condition logic should not be used any more. Use either the workflow conditions or for
special scenarios the Badl conditions.

System

Hilfe

&]

I ICa@ SHEADOH @ &

Definition von Ausgahebedingungen

selzBm[t]¢ @8]

Bedingungen fir Ausgabetypen
) Kontext
= 5] Bilcherkontext

REEYEE R EREE

Buchverkauf

Definition of the
condition as
ABAP Coding

? Buchvarkauf Nr.|Eledingung Ausgabe |St0p| Ok |
& Bucheinkauf 1|Status = D DruckiDruck @ »
7 Creator= MARKR' DruckiDruck @ +— Conditions for
3 Pagecount = 260 DruckDruck [+ the_a.(:_tlon
definition
Action profile and action
definitions
Bedingungsdefinition Ausgabedefinition
Status=D Verarbeitungszeitpunkt sofartige Yerarbeitung it
_
o | Blﬁ |@|(&1| |['ﬁ']|[ﬁ| @l[&‘ﬂ Auzgabemedien zuordnen: - |Medium
u Smart Forms Druck D
* T = condition true n Smart Forms Druck E|
F = condition falze Befiil WP | E‘
IF 1_context-=5TATUS = 'D'. FPartnernummer |:”IHI|
RULE_EWALUATION_OUTCOME = 'T'.
ENDIF.
Empfanger k Spoaleinstellungen k Formular k Weitere Einstellungen |
T Ausgabegerat P775 \
Ablagernodus Nur Drucken g \

Result, if the
condition is

Defaultwerte aus Customizing

fulfilled

[IEIIE (3) {000y 1s0301 [INS ~

The action profile of the application and the relevant action definitions are displayed in the top left-hand
screen area above. The conditions that were assigned to the action definitions appear right of this in the list.
The overview displays a number, the description of the condition, the assigned action (here: 2 expressions),
the stop flag, and a check symbol that displays whether the condition definition is consistent. The stop flag
means that once the condition has been met, further conditions are ignored.

There are 2 types of conditions: Conditions with an action and process conditions. Conditions with an action
are always assigned one action as a result. The process conditions do not have action templates. They
have a controlling character. The other conditions are only evaluated if the process condition returns FALSE

as the return value.

An action template (bottom right) can be assigned multiple processing options. If an invoice is to be sent by
post, for example and also printed out, simply assign the mail and fax as the processing here and perform

Page 26

PPF

the corresponding settings. If the condition is fulfilled, an action template with 2 processing options is
returned. The runtime system creates 2 separate actions from this.

The current conditions are created by an administrator in the production system since they are generally
based on application data that is only known in the productive system. A transport of conditions and thus a
preconfiguration provided by SAP is not possible with this tool.

Page 27

PPF

2.3.2 Action Merging

Merging is always necessary if existing, unprocessed actions have to be mixed with newly found actions.
This is the case, for example, if an existing document is changed. Since all data has changed, actions, that
were found when creating the document can be omitted, or new ones can be found. A new logic is required
for the merging of new and old actions.

The PPF currently provides three standard logics.
2.3.2.1 One unprocessed action only

This logic only permits one unprocessed action for each action type. The first unprocessed action remains
and all other actions are deleted. If the action is processed and another unprocessed action is found, then
this one remains.

2.3.2.2 One unprocessed action only per processing type

This logic only permits one unprocessed action for each processing type, that is one print, fax, or mail action.
Therefore, there can be multiple actions, but only one per processing type. The first unprocessed action of
the processing type remains, all further actions are deleted.

2.3.2.3 Only one action

This logic only permits one action for each action type. The first action remains, all further actions are
deleted.

2.3.2.4 Configurable action merging

This logic can be configured using a separate user interface. It can be set whether altogether one
unprocessed action may be produced or whether one unprocessed action may be produced for each
processing type.

In addition, the number of unprocessed actions can be restricted. For example, as shown here, you can set
that an action may only be successfully executed three times. Afterwards, the action is no longer scheduled.

Edit Utilities

Goto Selection Criteria System

Help

Tahle Yiew

@ BAH @@ DHE ODON AE @m

Dispiay View "Action Definition": Details

e

Dialog Structure {ctionProfile} BOOK [+]
< [CJAction Profile [ETE—— Book context =

12 Action Definition

I Processing Type:
Action Definition END

Desctiption Book sales

Action Definition k @ Action Description ' Action Summarizatn

Murmhber of Unprocessed Actions

® One Unpracessed Action for Each Action Definition
) One Unprocessed Action for Each Processing Type

Mumber of Processed Actions
1 Allowy &nw Murmber of Actions

eV 1 ® Successiul Action(s)
0 Action(s) with Errors
O Total Actionis)

[A B
| [[AEC (1) @00 PE| | pwel0313 NS 7

Page 28

PPF

3 Interaction Between Application and PPF at Runtime

3.1 Calling the PPF

The following displays all the necessary steps for starting the PPF. The preliminary steps (see section 2)
must be completed.

We again use the demo application from the application class SPPF_DEMO (TA SPPFDEMO). What has to
be done?

1. Data declarations

DATA:
* reference to application/proxy object

appl_object TYPE REF TO cl1_book_ppf, "application defined class
* reference to context object

context TYPE REF TO c1_demo_context_ppf, "application defined class
reference to partner object

partner TYPE REF TO c1_book_partner_ppf, "application defined class
* reference to partner collection

partner_coll TYPE REF TO cl1_partner_coll_ppf, "PPF defined class
reference to PPF manager (interface to PPF services)

manager TYPE REF TO c1_manager_ppf, "PPF defined class
determination protocol

determination_protocol TYPE balloghndl

book_id TYPE CHAR10.

Get an instance of class CL_MANAGER_PPF. This class displays the interface for PPF. All service methods
are called by it.

* get an instance of PPF manager

manager = cl_manager_ppf=>get_instance().

Generate the application object and set the key fields so that the application object can be found or
generated again. If the application object is a BOR object then its ID is set here. In our case, we set the key
fields of table PPFTBOOK so as to be able to access the entry later.

*

create application object

CLASS ca_book_ppf DEFINITION LOAD.

appl_object ?=
ca_book_ppf=>agent->if_os_factory~create_persistent_by_key(
i_key = book_id).

Generate an object of the action profile class

*

create context object

CREATE OBJECT context.

Page 29

PPF

Generate a partner collection that can include several partner objects. The partner collection represents the

document partner

* create partner collection
CREATE OBJECT partner_coll.

Generate a partner object and append it to the collection. You perform this step for every document partner.

* create first partner object
CREATE OBJECT partner

EXPORTING ip_partner_role = 'LF'
ip_partner_no = '1234567890'
ip_partner_text = 'Lieferant Meier'
ip_zav_addressno = '0000015762'
ip_zav_persno = '0000015763"
ip_zav_addr_type = '3'.

*

append partner to partner collection
CALL METHOD partner_coll->add_element(partner).
* create another partner object

CREATE OBJECT partner

EXPORTING ip_partner_role = 'WE'
ip_partner_no = '0987654321"'
ip_partner_text = 'Ship-to party Smith'
ip_zav_addressno = '0000015762'
ip_zav_persno = '0000015763"'
ip_zav_addr_type = '3'.

*

append partner to partner collection

CALL METHOD partner_coll1->add_element(partner).

The action profile object that encapsulates all information for the PPF. The name of the application and the
action profile that were defined in Customizing are transferred. The reference to the application is transferred
and also the partner collection. In addition, the application-specific fields are set for the action profile that are
relevant for determination. Conditions for an action are defined in these fields.

* set context attribute

context->applctn = 'BOOK'.
context->name = 'BOOK".
context->appl = appl_object.

context->partner = partner_coll.

* additional context fields

context->ID = ‘1234’ .

Page 30

PPF

context->creator = sy-uname.

Determination is started. As a return value, the application receives a determination log that displays how
many actions were found and why some actions were found. The determination log is not persistently stored
by the PPF itself. It is always created dynamically at runtime.

* start PPF
CALL METHOD manager->determine
EXPORTING io_context = context
IMPORTING ep_protocol = determination_protocol.

COMMIT WORK

The PPF uses the persistence services of Object Services. These services run after a COMMIT WORK, that
is, a COMMIT WORK must take place at the end so that the generated actions can be written to the
database.

Page 31

PPF

3.2 Processing Actions

There are three fundamental possibilities for processing:
e Immediate processing

o With document posting

e Later, by a batch report

e Manual triggering from the dialog

This processing time is defined in action type Customizing and can be overridden in the configuration of
conditions.

3.2.1 Immediate Processing

The action is executed as soon as it is found. Execution takes place during document editing. This can make
sense if you want an item in the document to be generated automatically, for example.

3.2.2 Processing with Document Posting
In this processing type, the actions are processed immediately after document processing, that is, after a
COMMIT WORK. Processing is triggered implicitly by the PPF.

Example: After the order is booked, an order confirmation is immediately sent by mail.
3.2.3 Later Processing

In later processing, the application itself must trigger the processing of actions. This generally occurs using a
selection report that selects the actions to be processed and triggers their processing. The PPF already
offers such a report (RSPPFPROCESS or transaction SPPFP). The report can also be triggered in the
background (without user interface).

Example: All faxes are to be sent at night in a batch run.

3.2.4 Manual Triggering of Processing in the Dialog

Actions can be generated here without the document already being posted. This processing type must be
declared in Customizing as permitted.

Example: A letter of invitation should be printed during the maintenance of a contact.

Page 32

PPF

3.3 User Interface at Runtime

3.3.1 Standard User Interface

The PPF provides a standardized user interface to display the found and manually added actions. In
addition, you can of course create your own user interface for your application. The APIs provide all functions
that are needed for this. The necessary function modules and subscreens are available in the function group
SPPF_VIEW_CRM. The standard Ul is highly configurable, you can exactly determine which columns and
functions are to be displayed.

Standard user interface as a subscreen:

Boaok Edit Goto Help
& A CEQ I EHE DHDH
PPF demo application: Edit hook NEWBOOKT
LF
BookData Actions | E
BRI ENEIEEIE = P IR R
Status| Action ﬁt}nnditinn Condition Parameter | Processing Parameters
£y |Book sales |5
@ |File card
£y |Book Order
4]
[~]
@ MAIL request 00000000001 2 created successiully. [2 [AEC 13 (ooo pwdfl313 | INS o

The user interface displays the existing actions and their status for a document. Newly found actions are also
displayed. A determination log documents in detail which actions have been found this time.

Page 33

PPF

Example of a determination log:

Log Edit

Goto

Help

2l H QI SHEB OHDLO

Display logs
G @ s

DatelTimeJser lumbe External ID Ohject bd Sub-ohjecttext Tran
@ 03.04.2002 14:19:44 MARKR 32 Post-Processin.. Determination |... SPPFDEMC
@ Problem class medium 20
@ Problem class Additional infof 12

Qo D) I[«[]
R E R PRI ERER EE |nu a0 o]

Messane Text

2 conditions for action EMD were read

Condition 1 returns an action template

Condition 2 returns an action termplate

Mumber of action termplates from the detarmination: 2

1«1

Action is partner dependent, partner determination is performed =
A partnerwas found

Action (MAD WWas Generated and Added

Action is partner dependent, parther determination is performed
A partnerwas found

Action (BCS) Was Generated and Added

Action Merging: Only 1 Successfully Processed Actionds) Allowed
Action oftype EMD (MAD is scheduled

Artion EMD oftype (BICS) is deleted

Action FILE (File card)

1 conditions for action FILE were read

Condition 1 returns an action template

Mumber of action templates from the determination: 1

Action is partner dependent, parther determination is performed
A partner was found

Artion (MAD was generated and added to the worklist

Action Merdging: Only 999 995 999 Successfully Processed Actiond{s) Allowed
Action oftype FILE (WAL is scheduled

Action BOOK_ORDER (Book Order)

1 conditions for action BOOK_QRDER were read

Condition 1 returns an action template

Number of action templates from the determination: 1

Artion (MET) Was Generated and Added

Action Merging: Only 1 Successfully Frocessed Actionds) Allowed
Action oftype BOOK_ORDER (MET) is scheduled

[l]| | I[<][¥]

| [| AEC (1) (000) P2l pwdl313 INS 2

09000 eereeeeeeeeeeeeeeeeeeeeee-

[l]l

Additional functions:
Actions can be added manually
There is a processing log for every processed action

The processing can be repeated (if allowed)

Page 34

PPF

Unprocessed actions can be deleted (if allowed)
Unprocessed actions can be processed (if allowed)

Settings can be overridden (printer, e-mail address, fax number, processing time, action processing, and so
on)

A describing text of the action can be displayed

Scheduling of actions from a generated worklist

3.3.2 Connection of Generic Object Services (GOS)

Using this service, actions can also be provided from the worklist for scheduling from here.

PPF Demoobjekt 123

REEEERERCAERERE]

Action service

A BOR object is needed to connect the GOS toolbar with the action service. The BOR object must implement
the BOR Interface IFGOSPPF (see TA SWO1). The interface defines 2 methods that are needed:

GET_MODE read mode (change or display mode)
GET_CONTEXTS read action profile

The service is contacted in Generic Object Services using the name PPFACTION. This name must be
transferred for the toolbar constructor. For more information on the Generic Object Services, read the
corresponding online documentation.

Page 35

PPF

3.4 Transaction Concept

3.4.1 Overview

Transactions ensure that a certain number of editing steps are either completely executed or not executed at
all. When the transaction ends, the transaction is either ended regularly and all data is written to the
database or the transaction is rolled back and none of the changes made reach the database.

The PPF essentially supports the transaction concept of the object services. For more documentation on
this, see Object Services. The object services do not support any parallel transactions, that is, two objects
(documents) cannot be edited in parallel, one is to be canceled and the other is to be saved. This is not
covered by the transaction model of object services. Since CRM really needs such a transactions concept,
an extension of the existing transaction model, the Object Pool, was implemented in cooperation with the
object services.

3.4.2 Object Pool

The Object Pool enables the parallel editing of documents. Here, the Object Pool is always notified which
document is currently active. Only one document can be edited for each session. Individual documents can
be selected for either saving or canceling (roll back of changes) after editing.

Object Pool methods
SET_GUID (sets the GUID of the document that is currently edited)

All persistent objects that are generated, loaded, or changed from this time on, logically belong to the
transaction with the set document GUID. They can later be saved using save_guids or reset using
reset_guids.

SAVE_GUIDS (transfers the GUIDs of the document that are provided for saving)
All objects that belong to the transferred GUIDs are written to the database.
RESET_GUIDS (transfers the GUIDs of the document that are provided for canceling)

All objects that belong to the transferred GUIDs are rejected.

The following example shows how a call of the object pool can appear. First a document 1 is generated.
Here, the GUID of this document is used to start a transaction using set_guid. All persistent objects (in the
sense of Object Services) that are created from here on are linked to this transaction and can later be saved
or rejected. A document 2 can now be created in this mode. During its editing this document GUID must now
be set. Like before, all of the objects created are linked to the transaction with this GUID. After the document
is edited, the first document is saved here and the second document and the objects (actions) created are
rejected.

Page 36

file:\\p31488\wwwroot\groups\lang\projects.htm

PPF

time create
| E—

CRM business document 1
GUID: ABC

setGUID('ABC')

CL_OBJECT_POOL

determine

CL_MANAGER_PPF

create
| E—

CRM business document 2
GUID: DEF

setGUID('DEF')

CL_OBJECT_POOL

determine

CL_MANAGER_PPF

resetGUID('ABC'")

CL_OBJECT_POOL

saveGUID('ABC')

CL_OBJECT_POOL

Page 37

PPF

4 Administration User Interface

Transaction SPPFCADM provides a practical entry point for cross-application administration of PPF.

IH @@ BHE anan PR @F
Display View "PPF: Applications in Customizing”: Overview

FPF: Applications in Customizing

Anpl. Diescription Ciate Profile Chj. Type
BEF_FD Frocurement Document BUS2261
BILLING Billing

BOOK Book management

CRM_DORDER CRM Order BUS2A00115

DNO_NOTIF Message BUSTEED

Ef] Pasition...

Custamizing and Configuration Clean Up Inconsistencies

| & Define Action Profile and Actions | | O Delete Non-Referenced Customizing Entrias

[Clean Up Inconsistencies in the Configuration

|ﬂ Condition Configuration {Transporable Conditions) I] Repair Customizing Assignment for Configuration

[clean Up Inconsistencies for Actions

@ Browser fiir Einplanbedingungen || Start Conditions |

|}3 Wizard for Defining and Scheduling an Action I

| Condition Configuration (Mot Transpartable) | 1] Clean Up Inconsistencies

& Select one entry [| MARKR P&l pwdfi3n 3

All applications are displayed and there are links to the action definition, the condition configuration, and the
Wizard. You can also correct possible inconsistencies.

Page 38

PPF

5 Extendibility

5.1 Business Application Add Ins (BAdls)

The PPF provides various BADIs that permit manipulation at defined times. There are currently 12 BADIs:

5.1.1 Exit for the printer determination (PRINTER_DETERM_PPF)

FLT_VAL Importing Type PPFDTT PPF: Name of a trigger type
IO_CONTEXT Importing Type Ref To CL_CONTEXT_PPF PPF: Action profile class
CP_PRINTER_DATA Changing Type PPFSPRINT PPF: Spool data

The printer is generally returned by the determination with the template for the action. The determination
returns an action template with action processing. A printer can be entered in action processing.

It is often the case that a specific printer is to be used due to the application data. In this way, for example,
the printer can be determined depending on the sales organization. At definition time of the action template,
the sales organization is naturally unknown. For this reason, the following BADI is called provided the
template or the determination does not return a printer.

The BADI has the name of the action type as a filter value. As a further import parameter the implementing
class has a reference to the actions profile object and thus access to all document data. A printer can now be
found and returned using the document data.

Example implementation: PRINTER_DET_SUSR_PPF (transaction SE19)

The example implementation reads the master data of the current user and returns the printer maintained
there.

5.1.2 Exit After Generated Action (TRIGGER_EXECUTED)

FLT_VAL Importing Type PPFDAPPL PPF: Application
IO_TRIGGER Importing Type Ref To CL_TRIGGER_PPF PPF: Trigger reference

This BADI is called after the action is completed, that is, after the action is processed. As a result, the action
can perform subsequent actions. If processing is incorrect (that is, there were errors with the processing of
the action) a routine or transaction can be executed for error handling, for example.

The BADI has the application names as the filter value. The action is
also transferred and can deliver its processing status (successful, with
error) or other information.

Take care of the performance. An implementation of this Badl will be called after the execution
5 of any action within the application, as the application serves as filter value here. A better option
’ might be to listen to the executed event of CL_ TRIGGER_PPF.

5.1.3 Exit for Context Extension (CONTEXT_EXTEND_PPF)

FLT_VAL Importing Type PPFDTT PPF: Name of trigger type
IO_CONTEXT Importing Type Ref To CL_CONTEXT_PPF PPF: Action profile class
RO_EXTENDED_CONTEXT Returning Type Ref To CL_CONTEXT_PPF PPF: Extended action profile

The BADI is used for potential extensions of the action profile class by the customers. If the attributes
defined in the action profile of the application are not sufficient for the customer’s determination, then he or
she can extend the application using action profile class using inheritance. The additional attributes must be

Page 39

PPF

provided with values. This BADI is used for this. The implementations are created for each trigger type. The
application should deliver example implementations.

5.1.4 Exit for Completion of Processing Options (COMPLETE_PROC_PPF)

FLT_VAL Importing Type PPFSCONACT PPF: Name of trigger type

IO_CONTEXT Importing Type CL_CONTEXT_PPF PPF: Context Super ClassSmart

IP_PROTOCOL Importing Type BALLOGHNDL Application Log: Log Handle

IP_NO_PROTOCOL Importing Type BOOLE_D Do Not Write a Log

I0_MEDIUM Importing Type Ref To Procesing Object Reference to corresponding
Processing

The BAdI is called after the action determination has taken place and before the created action is checked.
Here additional data might be set for the processing of the action. The following methods are available
depending on the type of processing:

. COMPLETE_MAIL Completes Mail Processing

. COMPLETE_FAX Completes Fax Processing

. COMPLETE_PRINT Completes Print Processing

. COMPLETE_METHOD Completes BADI Processing

. COMPLETE_WORKFLOW Completes Workflow Processing

e COMPLETE_SEND Completes Transmission Processing
¢ COMPLETE_ALERT Completes Alert Processing

The interface of the methods is always the same as above described.

5.1.5 Extend Container for Condition Evaluation (CONTAINER_PPF)

FLT_VAL Importing Type OJ_NAME Name of business object
CI_CONTAINER Changing Type Ref To IF_SWJ_PPF_CONTAINER Container with BOR object
CI_PARAMETER Changing Type Ref To IF_SWJ_PPF_CONTAINER Parameter container

The BAdI is called whenever a condition for the given BOR object type has to be evaluated. The
CI_CONTAINER contains the BOR object and the CI_PARAMETER the uses parameters. Additional objects
or parameters might be added to the container for condition evaluation.

An implementation will only work for buiness object repository (BOR) objects and not for class
N objects. As the filter is only the business object type, the BAdI will be called whenever this object
- type is used in a workflow condition. This BAdI should be only used after consulting PPF
development.

5.1.6 Exit for Execution of Actions (EXEC_METHODCALL_PPF)

FLT_VAL Importing Type OJ_NAME Name of business object
IO_APPL_OBJECT Importing Type Ref To OBJECT Reference to Application Object
I0_PARTNER Importing Type Ref To CL_PARTNER_PPF Message Partner
IP_APPLICATION_LOG Importing Type BALLOGHNDL Processing Protocol
IP_PREVIEW Importing Type CHAR1 Preview Mode

II_CONTAINER Importing Type Ref To | F_SWJ_PPF_CONTAINER Processing Parameters
IP_ACTION Importing Type PPFDTT Name of Action Definition
RP_STATUS Returning Type PPFDSTAT Processing Status

Page 40

PPF

The BAdI is a standard exit for enhancing business logic with dynamic processing. Via the implementation
PPF can trigger arbitrary business logic. After implementing the BAdI can be assigned in PPF customizing as
methodcall processing. Internal development is encouraged to use this processing type for generic
processing. Customers may also use this feature for customer specific processing.

5.1.7 Exit for Getting Possible Partner Functions of an Application
(GET_PARTN_ROLES_PPF)

5.1.8 Exit for Double Clicking on Values in the Display (GRID_CLICK_PPF)

5.1.9 Exit for Checking if Deletion of Action Profile is allowed
(CONTEXT_DELETE_PPF)

5.1.10 Exit for evaluation of schedule conditions (EVAL_SCHEDCOND_PPF)
5.1.11 Exit for evaluation of start conditions (EVAL_STARTCOND_PPF)

5.1.12 Exit for Adding further data to workflow container (WF_CONT_MODIFY_PPF)

Page 41

PPF

5.2 PPF Interface

The PPF provides three interfaces in three places that allow any extension:

5.2.1 Connection of Your Own Processing Options

The PPF provides standard processing options. This is currently Smart Forms Print, Smart Forms Fax,
Smart Forms Mail, and generic action processing. In the future, even more processing options like XML or
workflow will be supported.

If this is not sufficient to you, you can add your own action media at any time using the action media
provided. By implementing the interfaces you automatically integrate the processing options without the need
for coding changes inside the PPF.

Further information on this topic is available on request.
5.2.2 Connection of a Logic for the Determination

If the standard determination technologies are insufficient or if any specific determination technologies are
necessary, your own determinations can be connected using the IF_DETERMINATION_PPF interface. The
new determination class implements the interface and the methods of the interface. Thus the new
determination is integrated in the framework and can be used. You can select it using the possible entries in
the Customizing of the action definition.

e GET_PERSISTENCY_TABLE

Delivers the table in which persistent data for the determination object is to be stored. The information is
needed for the creation of the transport request in Customizing.

o DETERMINE

I0_CONTEXT Importing Type Ref To CL_CONTEXT_PPF Action profile class
IP_TTYPE Importing Type PPFDTT Action type
IP_DETLOG Importing Type BALLOGHNDL Log handle

RO_TRIGGER_TEMPL_COLL Returning Type Ref To CL_TRIGGER_TEMPL_COLL_PPF Collection of output templates

The actual determination method receives a reference to an actions profile object as the import parameter,
the action type, and a handle to a determination log that the condition is to fill. Using this information, the
determination returns one or multiple action templates.

5.2.3 Connection to a Separate Logic for Action Merging

Many different logics are also conceivable for the merging of existing and newly found actions. We offer
various standard logics. A self-defined logic is very easy to integrate. You must create a class for this that
implements the interface IF_ MERGE_PPF. As a template, you can view the following classes:

¢ CL MERGE_MAX1_FOR_TYPE_PPF max. 1 unprocessed action for each action definition
e CL_MERGE_MAX1_PPF max. 1 unprocessed action

Interface methods:

e GET_PERSISTENCY_TABLE

Delivers a table in which the persistent data is stored for the determination object. The information is
necessary for the merging of the transport request in Customizing.

e MERGE

Page 42

PPF

The merge method is called after determination to merge newly found actions with possible existing
actions using determination.

IO_NEW_TRIGGER_COLL Importing Type Ref To CL_TRIGGER_COLL_PPF Newly found actions
IO_OLD_TRIGGER_COLL Importing Type Ref To CL_TRIGGER_COLL_PPF Existing actions
IP_DETLOG Importing Type BALLOGHNDL Log handle
RO_TRIGGER_COLL Returning Type Ref To CL_TRIGGER_COLL_PPF Merged actions

MERGE_SINGLE

The method MERGE_SINGLE is called after the manual generation of an action (see User Interface
section) to merge this with possible existing actions.

IO_NEW_TRIGGER Importing Type Ref To CL_TRIGGER_PPF New action
IO_OLD_TRIGGER_COLL Importing Type Ref To CL_TRIGGER_COLL_PPF Existing actions
RO_TRIGGER_COLL Returning Type Ref To CL_TRIGGER_COLL_PPF Mixed proposals

Page 43

PPF

6 Appendix

6.1 Description of Interfaces

6.1.1 CL_MANAGER_PPF
The class CL_MANAGER_PPF serves as a central interface (API) for PPF. The following methods (services)
are offered:
e GET_INSTANCE (Static Method)
Parameter: None
Effect: Delivers an instance of the class (singleton)
e ADD_TRIGGER (Instance Method)
Parameter:
IO_CONTEXT Importing Type Ref To CL_CONTEXT_PPF Action profile
CO_TRIGGER Changing Type RefTo CL_TRIGGER_PPF Action
Effect:
Adds a new action for the action profile supplied
e REPEAT_TRIGGER (Instance Method)
Parameter:
I0_CONTEXT Importing Type Ref To CL_CONTEXT_PPF Action profile
10_TRIGGER Importing Type Ref To CL_TRIGGER_PPF Action to be repeated
RO_TRIGGER Returning Type Ref To CL_TRIGGER_PPF Repeated action
Effect:
Repeats processing of the action transferred
e DELETE_TRIGGER (Instance Method)
Parameter:
I0_CONTEXT Importing Type Ref To CL_CONTEXT_PPF Action profile
I0_TRIGGER Importing Type Ref To CL_TRIGGER_PPF Action
Effect:
Deletes the unprocessed action transferred

e DELETE_ALL_TRIGGERS (Instance Method)

Parameter:
I0_CONTEXT Importing Type Ref To CL_CONTEXT_PPF Action profile
IO_FORCE Importing Type BOOLE_D Without checks
Effect:
Deletes the actions of the transferred action profile. The method should be called when the document is
called.
e GET_TTYPES (Instance Method)
Parameter:
I0_CONTEXT Importing Type Ref To CL_CONTEXT_PPF Action profile

RO_TTYPES Returning Type Ref To CL_TTYPE_COLL_PPF Action types of the action profile

Paoge 44

PPF

Effect:
Delivers the action types for the action profile transferred
e GET_TRIGGERS (Instance Method)
Parameter:
IO_CONTEXT Importing Type Ref To CL_CONTEXT_PPF Action profile
RO_TRIGGERS Returning Type Ref To CL_TRIGGER COLL_PPF Actions for action profile
Effect:
Delivers all possible actions for the action profile
e CREATE_TRIGGER (Instance Method)

Parameter:

IP_TTYPE_NAME Importing Type PPEDTT Action definition
I0_CONTEXT Importing Type Ref To CL_CONTEXT_PPF Action profile
RO_TRIGGER Returning Type Ref To CL_TRIGGER_PPF Action

Effect:

Generates an action of the transferred type for this action profile
e DETERMINE (Instance Method)

Parameter:

I0_CONTEXT Importing Type Ref To CL_CONTEXT_PPF Action profile
EP_PROTOCOL Exporting Type BALLOGHNDL Determination log
Effect:

Starts the determination for the action profile transferred and returns the determination log

e SET_APPLKEY (Instance Method)

Parameter:

IP_APPLKEY Importing Type PPFDAPPKEY Application key
I0_CONTEXT Importing Type Ref To CL_CONTEXT_PPF Action profile
Effect:

Sets the field APPLKEY in all actions of the action profile with which the system can later search and
sort by

e REFRESH (Instance Method)
Parameter: None
Effect: All data of the PPF manager is lost
Resets the PPF manager, allocated memory is released
e LOCK TRIGGERS (Instance Method)
Parameter:
I0_CONTEXT Importing Type Ref To CL_CONTEXT_PPF Action profile
Effect:
Locks the triggers of this action profile for processing, recommended for incomplete documents
e UNLOCK_TRIGGERS (Instance Method)
Parameter:
I0_CONTEXT Importing Type Ref To CL_CONTEXT_PPF Action profile

Page 45

PPF

Effect:

Unlocks triggers of this action profile for processing

Events:
DETERMINATION_DONE Determination was performed
CHANGED Changes were performed
REFRESHED Manager was reset
GRID_CHANGED Changes in the interface were made
Attribute:

LOCALE_UPDATE Boolean variable default ="'X'

The effect of the attribute is that actions that are to be processed when the document is saved are
processed synchronously. If the flag is set to SPACE, processing takes place asynchronously using
RFC.

Page 46

PPF

6.2 Class Diagram

6.2.1 Customizing Classes

Logische Ansicht

CL_TTYPE_CUST_PPF

IF_DETERMINATION_PPF

+GET_PERSISTENCY_TABLE()
+DETERMINE()

IF_MERGE_PPF

+GET_PERSISTENCY_TABLE()
+MERGE()
+MERGE_SINGLE()

"NAME : PPFDTT

_DESCRIPTION : PPFDTTT

_CHANGEABLE : PPFDCHNG
-MULTIPLE_ISSUING : PPFDMULTP
-PARTNER_INDEP : PPFDNOPART
-PARTNER_ROLE : PPFDPARTRL
-DISPATCH_TIME : PPFDDSPTCH
-DEACTIVATED : PPFDTTIACT
-MEDIUM_COLL : CL_MEDIUM_CUST_COLL_PPF
-DETERMINATION : IF_DETERMINATION_PPF
MERGE : IF_MERGE_PPF

CL_MEDIUM_GENERIC_CUST_PPF

-CONFIG1 : PPFDGENFLD
-CONFIG2 : PPFDGENFLD
-CONFIG3 : PPFDGENFLD
-PROCCLS : SEOCLSNAME
-PROCMETH : SEOCMPNAME

+GET_PARTNER_INDEP()
+CONSTRUCTOR()
+SET_DATA_FROM_DBY()
+GET_ALL_DATA()
+SET_MEDIUM_COLL()
+GET_MEDIUM_COLL()
+GET_DISPATCH_TIME()

+GET_DEFAULT_MEDIUM()

T

mediumList defaultMedium

IF_MEDIUM_CUST_PPF

+GET_PERSISTENCY_TABLE()
+GET_MEDIUM()
+GET_MEDIUM_TEMPLATE()

7

CL_CONTEXT_DEF_PPF

-NAME : PPFDCNTXT
-DESCRIPTION : PPFDCNTXTT,

triggerTypeList | o) ASs : PPFDCLASS

contextList

Q

CL_APPL_CUST_PPF

-NAME : PPFDAPPL
-DESCRIPTION : PPFDAPPLT

applicationList

Q

CL_CUST_MANAGER_PPF

CL_SF_PRINT_CUST_PPF

CL_SF_FAX_CUST_PPF

CL_SF_MAIL_CUST_PPF

-UNIQUE_INSTANCE : ref to cl_ppf_customizing_manag

+GET_INSTANCE() :

-ARCHVMODE : SYARMOD
-PRINTPARAM : PPFDPRTPRM
-PROCCLS : SEOCLSNAME
-PROCMETH : SEOCMPNAME
-SMARTFORM : TDSFNAME

-ARCHVMODE : SYARMOD
-PROCCLS : SEOCLSNAME
-PROCMETH : SEOCMPNAME
-SMARTFORM : TDSFNAME

-PROCCLS : SEOCLSNAME
-PROCMETH : SEOCMPNAME
-SMARTFORM : TDSFNAME

+GET_MEDIUM() :
+GET_TTYPE_CUST()
+GET_TTYPE_COLL()
+GET_MEDIUM_COLL()

Page 47

PPF

6.2.2 Runtime Classes

CL_CONTEXT_MANAGER_PPF

"CONTEXT : Ref To IF_CONTEXT_PPF

-TTYPES : Ref To CL_TTYPE_COLL_PPF

+GET_TRIGGERS(RO_TRIGGERS : CL_TRIGGER_COLL_PPF)
+DELETE_TRIGGER(IO_TRIGGER : I0_TRIGGER)

+CREATE_TRIGGER(IP_TTYPE : PPFDTT, RO_TRIGGER : CL_TRIGGER_PPF)
+DETERMINE()

+CONSTRUCTOR(Il_CONTEXT : IF_CONTEXT_PPF)

+GET_TTYPES(RO_TTYPES : CL_TTYPE_COLL_PPF)

+ADD_TRIGGER(CO_TRIGGER : CL_TRIGGER_PPF)

+REPEAT_TRIGGER(IO_TRIGGER : CL_TRIGGER_PPF, RO_TRIGGER : CL_TRIGGER_PPF)

triggerTypeList

contextList

CL_MANAGER_PPF - singleton

-CONTEXT_MANAGERS : CL_CONTEXT_MANAGER_COL|

+REPEAT_TRIGGER()
+DELETE_TRIGGER()
+CONSTRUCTORY()
+GET_TTYPES()
+GET_TRIGGERS()
+CREATE_TRIGGER()
+DETERMINE()
+ADD_TRIGGER()
+GET_INSTANCE()

manager

CL_APPLICATION

IF_MEDIUM_PPF

rlvewTrigger

CL_TTYPE_PPF List

CL_PARTNER_PPF

‘NAME : PPFDTT
-DETERMINATION : IF_DETERMINATION_PPF
-MERGE : IF_MERGE_PPF

-NEW_TRIGGER_LIST : CL_TRIGGER_COLL_PPF
-CURRENT_TRIGGER_LIST : CL_TRIGGER_COLL_PPF,
-MEDIUM_LIST : CL_MEDIUM_CUST_COLL_PPF
-CONTEXT : IF_CONTEXT_PPF
-TTYPE_CUSTOMIZING : CL_TTYPE_CUST_PPF

A

-APPL : Object
-APPLCTN : PPFDAPPL
-APPLKEY : SYSUUID_C

CL_TRIGGER_PPF

-PARTNNO : PPFDPARTNO
-PARTNROLE : PPFDPARTRL
-PARTNTEXT : PPFDPARTTX
-PARTNTY : PPFDPARTTY
-ZAVADDR : AD_ADDRNUM
-ZAVPERS : AD_ADDRNUM
-ZAVTYPE : PPFDADRTYP
-ZAVCOMMNO : AD_CONSNUM

-CONTEXT : PPFDCNTXT
-DISPATCH : PPFDDSPTCH

+GET_TRIGGERS()

+GET_TTYPE_CUSTOMIZING()
+CHECK_TRIGGER()
+CREATE_TRIGGER()

-IS_CHANGED : PPFDTTCHNG
-IS_INACTIV : PPFDIACT
-IS_LOCKED : PPFDTLOCK

CONSTRUCTOR
:ADD TRIGGER()() -IS_REPEAT : PPFDTRPT
+DETERMINE() -MEDIUM : IF_MEDIUM_PPF

-STATUS : PPFDTSTAT
-TIMECHANGE : PPFDTCHNGD
-TIMECREATE : PPFDTCREAT
? _TTYPE : PPFDTT

-USERCHANGE : PPFDUCHNGD
-USERCREATE : PPFDUCREAT
+CREATE_TRIGGER_FROM_CUST()
+CREATE_TRIGGER_FROM_TEMPLATE()
+CREATE_TRIGGER()
+DELETE_TRIGGER()
+COPY()
+EXECUTE()
+REPEAT()
+PREVIEW()

+DELETE_TRIGGER()
+REPEAT_TRIGGER()

determination

protocol currentTrigger

List

MEDIUM_LIST

CL_PROTOCOL_FIND_PPF|

IF_MEDIUM_CUST_PPF

Page 48

calls processing
method of this

processing
protocol

+CHECK()
+MEDIUM_CHANGED()
+COPY()

+EXECUTE()

+PREVIEW()

+1S_EQUAL()
+LANGUAGE_IS_EQUAL()
+COMPLETE()
+PARTNER_IS_EQUAL()
+GET_PARTNER()
+GET_PROCESSING_LOG()
+SET_PARTNER()
+GET_TYPE()

B

CL_PROTOCOL_PROC_PPF

|

CL_SF_PRINT_PPF|

CL_SF_FAX_PPF

CL_SF_MAIL_PPF

CL_MEDIUM_GENERIC_PPF|

calls processing

class

calls procgssing
of this

CL_PROCESSING_DEMOBOOK_PPF

inherits
from

CL_SF_PROCESSING_PPF|

PPF

6.2.3 Service Classes

The super class CL_CONTEXT_PPF encapsulates all necessary data for the action
determination. Any application using PPF has to define a class which inherits from
CL_CONTEXT_PPF and extends it with further attributes which can be used as sort fields for
later processing of the action. A reference to this class will be transmitted to the PPF
framework in order to determine the appreciate actions.

CL_CONTEXT_PPF

CL_PARTNER_COLL

+NAME : PPFDCNTXT
+APPL : REF TO OBJECT
+APPLCTN : PPFDAPPL

+PARTNER : REF TO CL_PARTNER_COLL_PPF

+ADD_ELEMENTY()
+DELETE_ELEMENT()
+GET_NEXT_ELEMENT()

GET_VALUE_OF_ATTRIBUTE

+GET_NUMBER_OF_ELEMENTS()
+RESET_ITERATOR()
+CLEAR()

implements

CL_DEMO_CONTEXT_PPF

-NAME : PPFDCNTXT

-APPL : REF TO OBJECT

-APPLCTN : PPFDAPPL

-PARTNER : REF CL_PARTNER_COLL_PPF
-ID : CHAR10
-PAGECOUNT : NUM4
-STATUS : PPFDDSTAT
-CREATOR : SYUNAME

+CONTAINS()

REF TO

+GET_VALUE_OF ATTRIBUTE():

business document IF_PARTNER_PPF

partner

+GET_ZAV_ADDRESS()
+GET_PARTNER()

9

CL_BOOK_PARTNER_PPF

-PARTNER_NO : PPFDPARTNO
-PARTNER_ROLE : PPFDPARTRL
-PARTNER_TYPE : PPFDPARTTY
-ZAV_ADDRESSNO : AD_ADDRNUM
-ZAV_PERSNO : AD_ADDRNUM
-ZAV_ADDR_TYPE : PPFDADRTYP
-PARTNER_TEXT : TEXT60
+IF_PARTNER _PPF~GET ZAV_ADDRESS()
+IF_PARTNER_PPF~GET_PARTNER()

the PPF demo application for example

defines the following context class
REF TO
. IF_LOCK_PPF
CL_BOOK_PPF implements
™
-ID : CHAR10
+TITLE : TEXT60 :Eggggﬂgg

+AUTHOR : TEXT60
+IF_LOCK_PPF~ENQUEUE()
+IF_LOCK_PPF~DEQUEUE()

Page 49

PPF

6.3 Sequence Diagrams

6.3.1 Calling the PPF

. .
«class» I
CLﬁOSMSYST i§%@;‘;ﬁ |F722?|Tgﬁus 'CLﬁ“ngéGE
il I I
get_transaction_manager() ‘ ‘ ‘
[1F_OS_ TRANSACTION, MANAGE] ‘ ‘
[\ \
create_t b) ‘ ‘
el AF_OS_TRANSACTION. ____________] \
\
|

\
| start) |
tart of t ti
P T T J
\

| get_instance() |
CL_MANAGER_PPF

|CL_PARTNER|
_COLL_PPF

set up partners

"define context atfributes such as name, dpplication object, :CL_PARTNER_COLL_PPF, etc."

[

|
determination \ \ \ U

\—I - [— T —— S —
\ \
| _end() I I
— "

[R e R r ————————————————— ‘ ———————————————————

Page 50

PPF

6.3.2 Method DETERMINE Part 1

Determination, Scenario A : part 1 - trigger type does not exist yet (AH_990909)
£ CONTEXT] "CL_TTYPE_C
:CL_CUST_M = 5 CL_TTYPE_C
MANAGER_C| — = ST_COLL_Pf — —
OLL PPF NAGER_PPF p OLL_PPF
T
[no manager for this context]
create»(:IF_CONTEXT_PPF)
PF

get_ttype_ ion_name, context_name),

CL_TTYPE_CUST_COLL_PPF [

[all elements] get_next_element()
:CL_TTYPE_CUST PPF__| —‘ ‘

[all elements] «create»(:CL_TTYPE_CUST_PPF, :IF_CONTEXT_PPF)

main program
i determine
(IF_CONTEXT_PPF)

get_context_manager
(IF_CONTEXT_PPF) |

L_TTYPE_PI
I F

T

I

I

I

I

I

I

I

|

|

I

| | PPFSTTCUAT

| get_ingtance()
i

| :CL_TRIGGER, SELECTOR PPF | |
f T

I

I

I

I

I

I

I

I

I

I

|

|

jelect_by_context_pppl_type(:OBJECT, |
context?, ttype?, status) .
T

urrent_trigger_list:fL_TRIGGER_COLL |
PF

Urrent_trigger.

[eurrent mqqir list is initial] «create» O TRIGG

ew_trigger_lis
:CL_TRIGGER
COLL_PPF

«create»

no manager for this context]
add_element(:CL_CONTEXT_MAN
AGER_PPF)

L_CONTEXT_MANAGER_PPH

The second part of the DETERMINE
scenario just shows the handling after or
without explicit trigger creation

Page 51

PPF

6.3.3 Method DETERMINE Part 2

Determination, Scenario A : part 2 - trigger type does exist now (AH_990929)

[all elements] get next_element()
t
:CL_TTYRE_PPF
1

[all elements and ;CL_TTYPE_PPF acive] determine()
T

[CL_CONTEXT] «class» T ew_trigger_list ype_customiz] L_TRIGGER] T
) % 'CLaMggéGE | MANAGER_P| I:E?%JRJES IF_OS_TRANS| ‘%{J T,'ffgc ‘CLJ;:PEJ’ IF_DETERMIN| |:CL_TRIGGER| hg:CL_TTYPE TEMPL_COLI \F,MERGE,P;|
main program - PF EM - ACTION - ATION_PPF COLL PPF CUST_PPF PPF F
determine() T - I I I T T
get jon_manager() | I I | | |
L_0S_TRANSACTION_MAf } } } } }
la-
register on event | | | | | |
'FINISHED' which is |
raised by get_current ion() | | | | |
IF_OS_TRANSACTI /IF_OS_TRANSAGTION \ \ | | | |
ON (needed to start
activities after | | | | | |
'COMMIT WORK') set handler 'on_finished’ | | | | I
! | [| | |
I I I I I
I I I
L | |
| |
| |
: |
|

determine(:IF_CONTEXT_PPF,

ype,
,TR\GGER,TEMPL,COLL,PPQ

clear()

I
get_all_data() |
PPFSTTCUAT |

T
|
\
t
|
|
I
I
|
|
|
|
|
| [all elments] get_next_element()
I
|
|
|
|
|
|
|
}
I
|
|
|
|

CL| TRIGGER_TEMPL|_PPF

Probably this part has to
be described in more

detail, eg how to build up
the new_trigger_list

I
I I
| |
f f
| |
| f
I |
, o
T T
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
| |
f |
I I
I I
I I
I I
I I

Page 52

